Prospective Students' Reactions to the Presentation of the Computer Science Major

by

Daniel Scott Weaver

Submitted in partial fulfillment of the requirements for the degree of Doctor of Professional Studies in Computing

 at

Seidenberg School of Computer Science and Information Systems

Pace University

December 2010

UMI Number: 3446780

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI 3446780 Copyright 2011 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106-1346

We hereby certify that this dissertation, submitted by Daniel Scott Weaver, satisfies the dissertation requirements for the fegree of Doctor of Professional Studies in Computing has been approved.

Dr. Fred Grossman

Dr. Charles Tappert

Dr. Ronald Frank

School of Computer Science and Information Systems Pace University 2010

An Abstract

Prospective Students' Reactions to the Presentation of the Computer Science Major

by Daniel Scott Weaver

Submitted in partial fulfillment of the requirements for the degree of Doctor of Professional Studies in Computing

December 2010

The number of students enrolling in Computer Science in colleges and Universities has declined since its peak in the early 2000s. Some claim contributing factors that intimate that prospective students fear the lack of employment opportunities if they study computing in college. However, the lack of understanding of what Computer Science is and what it involves might be a more compelling reason for the decline. This dissertation investigates the attitudes and perceptions of prospective students toward studying Computer Science and the presentation of the Computer Science major on college and university websites.

The study employs four research stages that examine different aspects of this question that culminate in high school students providing their opinions of different representations of the Computer Science curriculum. The first stage evaluates college and university presentations of the Computer Science curriculum available on the web develops a Typical Curriculum. The second evaluates how businesses promote computer related job opportunities and develops an alternative presentation of the curriculum based on the findings. The third elicits perceptions, opinions, and ideas from prospective students and college students on how to develop a more exciting presentation of the curriculum. The final stage utilizes the curricula developed in the prior stages of this study in surveys designed to eliciting prospective students' reactions to the different curricula.

The results indicate that typical Computer Science curricula do not interest prospective students. The curriculum developed through the input of prospective and college students, however, was more favorably received and seemed to increase student interest in pursuing the study of Computer Science. Prospective students provided insight into their perceptions of the Computer Science curriculum. This

insight is valuable to colleges and universities that desire to present their curriculum in a manner that is exciting and motivating to prospective students.

This study informs colleges and universities of the characteristics of a curricular presentation that excite and motive prospective students to pursue studying Computer Science.

Acknowledgements

I would like to thank my advisor, Dr. Fred Grossman, and my advisory committee, Dr. Ronald Frank and Dr. Charles Tappert, whose guidance and support has helped me to become a better researcher.

I would like to thank my colleagues, Dr. Marlin Eby, Dr. Bob Kilmer and Mr. Brian Nejmeh, for their support and help with my dissertation. Thank you, Dr. Eby, for your statistical help! Thank you Dr. Kilmer and Mr. Nejmeh for reading through my dissertation at various stages and providing helpful feedback.

I wish to thank Tyler Dean, Joy Gallucci, and Matthew Kline, for their help in gathering curricular data from the various college and university websites.

I would like to acknowledge and thank all the Advanced Placement Computer Science teachers that have involved their students in evaluating the different curricular presentations and to their students who provided valuable insight into their world.

Special thanks to Mr. Steve Kessler and Ms. Gail Hiestand, guidance counselors at Mechanicsburg Area High School, for the time and effort they gave me in working with the junior and senior classes at Mechanicsburg Area High School. Thank you for helping set up the focus groups and for your suggestions.

Special thanks to Mr. Dave Harris, principal at Mechanicsburg Area High School, and the Mechanicsburg Areas School District school board for their support and permission in conducting the technology survey and focus groups in the high school.

To my parents, Mr. Daniel Weaver and Mrs. Marilou Weaver, for their encouragement and support. To my favorite executive editor, Mrs. Marilou Weaver, for the time you spent proof reading my dissertation and your encouragement throughout this journey. Thanks Mom.

And finally, to my wife, Lorelei, and my daughters, Marisa and Leanne, thank you for putting up with me through this journey. Thank you for your understanding when I could not play, but had to write.

Table of Contents

Ab	strac	t		iii
Ac	Acknowledgements			
Lis	t of 7	Fables		xi
Lis	t of l	Figure	\mathbf{s}	xiii
1	Int	roduct	tion	1
	1.1		Perspectives: College Presentation, Business Opportunities, rospective Students	2
	1.2	The R	lise and Fall of Enrollment	3
	1.3	Job P	rojections Over the Next Ten Years	6
	1.4	Other	Steps Taken to Address the Declining Enrollment	8
		1.4.1	Research Addressing Declining Enrollment	9
		1.4.2	Computer Science Curriculum Evolution	10
		1.4.3	Research Broadening Higher Education's Perspective	17
	1.5	Childr	en Today Grow Up Exploring Computer Science	18
	1.6	Struct	ure of this Research	19
		1.6.1	Stage 1: Curricular Presentations	21
		1.6.2	Stage 2: Technology Job Review	22
		1.6.3	Stage 3: Student Opinions and Ideas for Developing a Student-Focused Curriculum	24
		1.6.4	Stage 4: Survey of Prospective Students	26
	1.7	Resear	rch Hypotheses and Objectives	27
	1.8	Limita	ations of the Study	29
	1.9	Overv	iew of the Results of this Research	30
	1.10	Roadr	nap of dissertation	31
2	Co	llege C	Curricular Review	32
	2.1	Colleg	e and University Selection	33

		2.1.1	Selection Criteria	33
		2.1.2	Selection Process	39
	2.2	Gather	ring College Curricula	44
	2.3	Deterr	nining Key Course Titles	47
	2.4	Develo	oping a Typical Curriculum	59
	2.5	Gather	ring and Analyzing Historic Curricula	64
		2.5.1	Course Comparisons between 2000 and 2010	64
		2.5.2	Course Comparisons between 2005 and 2010	66
		2.5.3	Conclusions	68
	2.6	Summ	ary	69
3	Te	chnolog	gy Job Review	72
	3.1	Gather	ring Technology Job Data	74
	3.2	Proces	ssing the Gathered Technology Job Data	81
	3.3	Techno	ology Job Data	83
		3.3.1	Information Technology	83
		3.3.2	Web	84
		3.3.3	Database	84
		3.3.4	Networking	85
		3.3.5	Software Engineering	85
		3.3.6	Software Quality and Testing	85
		3.3.7	Security	86
		3.3.8	Application	87
	3.4	Job-Fo	ocused Curriculum Design	87
	3.5	Techno	ology Job Summary	91
4	St	udent	Opinions and Ideas for Developing a Student-Focused	l
	Cur	ricului	m	93
	4.1	High S	School Student Technology Survey Methodology	94
		4.1.1	Mechanicsburg Area High School	95
		4.1.2	Survey Design	96

	4.1.3	Subject Privacy and Confidentiality	99
	4.1.4	Subject Selection	101
	4.1.5	Distribution and Response Management	101
	4.1.6	Survey Piloting	101
	4.1.7	Overview of the Survey	102
4.2	High S	School Student Technology Survey Data	105
	4.2.1	Demographics	106
	4.2.2	Interests in High School	106
	4.2.3	Use of Technology	107
	4.2.4	College Focus	109
	4.2.5	Technology-Related Terms	110
4.3	Impac	t of the Technology Survey	111
4.4	High S	School Focus Groups Methodology	113
4.5	High S	School Focus Groups Data	120
	4.5.1	Introductory Questions	121
	4.5.2	View of computers in general	123
	4.5.3	Job Opportunities in Computing	126
	4.5.4	Initial thoughts of College	129
	4.5.5	Majoring in Computing	132
	4.5.6	Wrap-up regarding computing	137
	4.5.7	Concluding the Focus Group	138
4.6	Impac	t of the Focus Groups	140
4.7	Colleg	e Student Delphi Study Methodology	141
	4.7.1	Introduction to the Delphi Technique	142
	4.7.2	An Overview of the Delphi Technique	143
	4.7.3	The Process	143
4.8	Colleg	e Student Delphi Study Data	154
	4.8.1	Iteration 1	154
	4.8.2	Iteration 2	155

		4.8.3	Iteration 3	160
	4.9	Impac	t of the Delphi Study	168
	4.10	Studer	nt-Focused Curriculum Design	173
5	\mathbf{Stu}	ident F	Perceptions and Reactions to Computer Science Curricula	a 1 78
	5.1	Overvi	iew of the Curricular Presentation Surveys	179
		5.1.1	The First Survey Instrument	180
		5.1.2	The Second Survey Instrument	192
		5.1.3	Selection of Participants	208
		5.1.4	Privacy and Confidentiality	209
		5.1.5	Distribution, Response Management, and Administration	211
		5.1.6	Pilot	212
		5.1.7	Initial Release	212
	5.2	Result	s of the First Curricular Presentation Surveys	212
		5.2.1	Typical Computer Science Curriculum Survey Responses	213
		5.2.2	Job-Focused Curriculum Responses	220
		5.2.3	Technology Information	228
		5.2.4	Demographics of the First Survey Instrument	229
		5.2.5	Summary of the First Survey Instrument	231
	5.3	Result	s of the Second Curricular Presentation Surveys	232
		5.3.1	Typical Computer Science Survey Responses	232
		5.3.2	Student-Focused Computer Science Survey Responses	238
		5.3.3	Summary of the Second Survey Instrument	247
6	Su	mmary	and Reflection	249
	6.1	Addre	ssing the Hypotheses	250
		6.1.1	Computer Science Curricular Presentation	250
		6.1.2	College and University Curricular Presentation	252
		6.1.3	Students and Technology	252
		6.1.4	Curriculum and Job Postings	253

6.2 Contribution to Knowledge $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 2$	54
6.3 Other Avenues of Research	55
Appendix A — Computer Science Programs	58
Appendix B — Key Course List 32	21
Appendix C — Job Search Categories	78
Appendix D — Technology Survey	81
Appendix E — Interview Guide 38	85
Appendix F — Recruitment Script	91
Appendix G — Sample Delphi Session	93
Appendix H — Student-Focused Curriculum	12
Appendix I — Survey Instruments	19
Appendix J — Institutional Review Board for Human Investigation	62
Appendix K — The Blind Men and the Elephant	

List of Tables

1.1	The Rise and Fall of Enrollment	5
1.2	Fastest Growing Occupations, 2006-2016 [52]	7
1.3	Curricular Recommendations 1965 [47]	11
1.4	The List of Courses in Curriculum '78 [23]	13
1.5	LACS Curricular Guideline 1986	16
1.6	The Fourteen Knowledge Focus Groups [2]	17
2.1	Selection Criteria used to select the colleges and universities for this study	38
2.2	Number of schools listed for public vs. private, setting and size	40
2.3	Private, Four-Year Institutions Chosen	42
2.4	Public, Four-Year Institutions Chosen	43
2.5	Example of Introduction to Computer Science	49
2.6	Example of Programming I	52
2.7	Example of Programming II	53
2.8	Example of Data Structures	54
2.9	Example of Data Structures And Algorithms	55
2.10	Example of Algorithms and Complexity	56
2.11	List of the Required and Choice Option Key Courses (Part I) $\ . \ . \ .$	57
2.12	List of the Required and Choice Option Key Courses (Part II)	58
2.13	Key Course Names for Courses that are required	61
2.14	Key Course Names for Courses that are required or choice-options .	62
2.15	The Typical Computer Science Curriculum	63
2.16	Raw Averages Each Representing the Percentage	64
2.17	Statistics Comparing Required Courses in 2010 to Courses in 2000 $$.	65
2.18	Raw Averages Each Representing the Percentage	66
2.19	Raw Averages Each Representing the Percentage	67
2.20	Statistics Comparing Required Courses in 2010 to Courses in 2005 .	67

2.21	Raw Averages Each Representing the Percentage	68
3.1	Job Search Engines Consulted	74
3.2	Keywords in Information Technology-related Jobs	83
3.3	Keywords in Web-related Jobs	84
3.4	Keywords in Database-related Jobs	84
3.5	Keywords in Networking-related Jobs	85
3.6	Keywords in Software Engineering-related Jobs	86
3.7	Keywords in Software Quality and Testing-related Jobs	86
3.8	Keywords in Security-related Jobs	86
3.9	Keywords in Application-related Jobs	87
4.1	Mechanicsburg Area School District Demographics [7]	96
4.2	Gender Breakdown	106
4.3	Junior/Senior Class Breakdown	106
4.4	Favorite Class	107
4.5	Least Favorite Class	107
4.6	Technology Used Regularly	107
4.7	Technology Wanted	107
4.8	Main Use of Computer	108
4.9	Favorite Website	108
4.10	Formal Class	109
4.11	Self-Learned	109
4.12	Like to Learn	110
4.13	Major in College	110
4.14	Interest in Technical Terminology	111
5.1	Typical Curriculum: Students' Initial Interest in Studying Computer Science	213
5.2	Typical Curriculum: Responses to the Introduction Fostering Under- standing about the Major	214
5.3	Typical Curriculum: Responses to the Introduction Fostering Under- standing about Jobs	214

5.4	Typical Curriculum: Responses to What You Will Be Studying Fostering Understanding in What is Studied	215
5.5	Typical Curriculum: Interest in Courses Listed in Rank Order	216
5.6	Typical Curriculum: Importance of Exact Course List and Course Names	216
5.7	Typical Curriculum: Importance of Required Course List	216
5.8	Typical Curriculum: Importance of Items in the Curriculum	217
5.9	Typical Curriculum: Importance of Items in the Curriculum Ranked by Borda Scores	217
5.10	Typical Curriculum: Importance of Items in the Curriculum Ranked by Borda Scores with Suspect Responses Removed	218
5.11	Typical Curriculum: Students' Interest Level in Studying Computer Science After Taking the Survey	220
5.12	Typical Curriculum: Change in Interest Level	220
5.13	Job-Focused: Students' Initial Interest Level in Studying Computer Science	221
5.14	Job-Focused: Responses to the Introduction Fostering Understanding about the Major	222
5.15	Job-Focused: Responses to the Introduction Fostering Understanding about Jobs	222
5.16	Job-Focused: Interest in Concentrations Listed in Rank Order	222
5.17	Job-Focused: Interest in Concentrations Listed by Borda Value $\ . \ .$.	223
5.18	Job-Focused: Responses to What You Will Be Studying Fostering Understanding in What is Studied	224
5.19	Job-Focused: Importance of Exact Course List and Course Names .	224
5.20	Job-Focused: Importance of Required Course List	225
5.21	Job-Focused: Importance of Items in the Curriculum	225
5.22	Job-Focused Curriculum: Importance of Items in the Curriculum Ranked by Borda score	226
5.23	Job-Focused: Students' Interest Level in Studying Computer Science After Taking the Survey	227
5.24	Job-Focused: Change in Interest Level	228
5.25	First Survey Instrument: Technology Courses Students have Taken .	228

5.26	First Survey Instrument: Math Courses Students have Taken $\ .\ .$.	229
5.27	First Survey Instrument: Software Tool Students Use	229
5.28	First Survey Instrument: Service-Oriented Application Students Use	230
5.29	First Survey Instrument: State Representation	230
5.30	Second Survey Typical Curriculum: Students' Initial Interest in Studying Computer Science	233
5.31	Second Survey Typical Curriculum: Student Agreement Level of Statements Related to the Curriculum Introduction	234
5.32	Second Survey Typical Curriculum: Importance of Items in the Introduction that Fosters Motivation	235
5.33	Second Survey Typical Curriculum: Student Agreement Level of Statements Related to the Required Course List	236
5.34	Second Survey Typical Curriculum: Importance of Items in the Required Course List that Fosters Motivation	236
5.35	Second Survey Typical Curriculum: Students' Interest Level in Studying Computer Science After Taking the Survey	237
5.36	Typical Curriculum: Change in Interest Level	237
5.37	Second Survey Typical Curriculum: Students' Reasons for Increase in Interest	237
5.38	Student-Focused: Students' Initial Interest in Studying Computer Science	239
5.39	Student-Focused: Student Agreement Level of Statements Related to the Curriculum Introduction	240
5.40	Student-Focused: Importance of Items in the Introduction that Fosters Motivation	241
5.41	Student-Focused: Student Agreement Level of Statements Related to the "What You Will Be Studying" Section	242
5.42	Student-Focused: Importance of Items in the Required Course List that Fosters Motivation	243
5.43	Student-Focused: Responses Related to Concentrations that Motivate Students to Look into Computer Science	243
5.44	Student-Focused: Students' Interest Level in Studying Computer Science After Taking the Survey	243
5.45	Student-Focused Curriculum: Change in Interest Level	244

5.46	Student-Focused: Students' Reasons for Increase in Interest \ldots .	244
5.47	Second Survey Instrument: State Representation	246
5.48	Second Survey Instrument: AP Courses Students have Taken	247
A.1	Courses for the Computer Science major at Abilene Christian University	y259
A.2	Courses for the Computer Science major at Amherst College	260
A.3	Courses for the Computer Science major at Bethel University	261
A.4	Courses for the Computer Science major at Brigham Young University	262
A.5	Courses for the Computer Science major at Bucknell University	263
A.6	Courses for the Computer Science major at California Berkely, University of	264
A.7	Courses for the Computer Science major at California Berkely, University of (Page 2)	265
A.8	Courses for the Computer Science major at Calvin College	266
A.9	Courses for the Computer Science major at Carnegie Mellon University	y267
A.10	Courses for the Computer Science major at Carnegie Mellon University (Page 2)	268
A.11	Courses for the Computer Science major at Cedarville University	269
A.12	Courses for the Computer Science major at Christian Brothers University	270
A.13	Courses for the Computer Science major at Cornell University	271
A.14	Courses for the Computer Science major at Cornell University (Page 2))272
A.15	Courses for the Computer Science major at Duke University	273
A.16	Courses for the Computer Science major at Duke University (Page 2)	274
A.17	Courses for the Computer Science major at Duke University (Page 3)	275
A.18	Courses for the Computer Science major at Eastern Mennonite University	276
A.19	Courses for the Computer Science major at Hendrix College	277
A.20	Courses for the Computer Science major at Illinois, University of $\ . \ .$	278
A.21	Courses for the Computer Science major at Illinois, University of (Page 2)	279
A.22	Courses for the Computer Science major at Johns Hopkins University	280

A.23	Courses for the Computer Science major at Johns Hopkins University (Page 2)	281
A.24	Courses for the Computer Science major at Kentucky, University of .	282
A.25	Courses for the Computer Science major at Kettering University	283
A.26	Courses for the Computer Science major at Linfield College	284
A.27	Courses for the Computer Science major at Lyndon State College	285
A.28	Courses for the Computer Science major at Lyon College	286
A.29	Courses for the Computer Science major at Maine at Fort Kent, University of	287
A.30	Courses for the Computer Science major at Massachusetts Amherst, University of	288
A.31	Courses for the Computer Science major at Michigan State University	289
A.32	Courses for the Computer Science major at Midwestern State University	/290
A.33	Courses for the Computer Science major at Nevada, Reno, University o	f291
A.34	Courses for the Computer Science major at New Mexico Institute of Mining and Technology	292
A.35	Courses for the Computer Science major at Northern Arizona University	/293
A.36	Courses for the Computer Science major at Oberlin College $\ . \ . \ .$	294
A.37	Courses for the Computer Science major at Oklahoma State University	295
A.38	Courses for the Computer Science major at Oregon State University	296
A.39	Courses for the Computer Science major at Oregon State University (Page 2)	297
A.40	Courses for the Computer Science major at Pace University	298
A.41	Courses for the Computer Science major at Pace University (Page 2)	299
A.42	Courses for the Computer Science major at Pittsburgh Bradford, University of	300
A.43	Courses for the Computer Science major at Pittsburgh Bradford, University of (Page 2)	301
A.44	Courses for the Computer Science major at Princeton University	302
A.45	Courses for the Computer Science major at Rhode Island College	303
A.46	Courses for the Computer Science major at Rochester, University of	304

A.47	Courses for the Computer Science major at South Dakota School of Mines and Technology	305
A.48	Courses for the Computer Science major at Southern California, University of	306
A.49	Courses for the Computer Science major at Southern California, University of (Page 2)	307
A.50	Courses for the Computer Science major at Stevens Institute of Technology	308
A.51	Courses for the Computer Science major at Texas A & M $\ .\ .\ .$.	309
A.52	Courses for the Computer Science major at Texas A & M (Page 2) $% = (1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2$	310
A.53	Courses for the Computer Science major at Texas Arlington, University of	311
A.54	Courses for the Computer Science major at Texas Arlington, University of (Page 2)	312
A.55	Courses for the Computer Science major at Virginia Polytechnic Institute and State University	313
A.56	Courses for the Computer Science major at Virginia Polytechnic Institute and State University (Page 2)	314
A.57	Courses for the Computer Science major at Virginia's College at Wise, University of	315
A.58	Courses for the Computer Science major at West Virginia University Institute of Technology	316
A.59	Courses for the Computer Science major at William Penn University	317
A.60	Courses for the Computer Science major at Wisconsin, University of	318
A.61	Courses for the Computer Science major at Wisconsin, University of (Page 2)	319
A.62	Courses for the Computer Science major at Worcester Polytechnic .	320
B.1	Example of Advanced Database Systems	322
B.2	Example of Algorithm Analysis	322
B.3	Example of Algorithms II	322
B.4	Example of Algorithms III	323
B.5	Example of Algorithms and Complexity	323
B.6	Example of Algorithms and Complexity(Page 2)	324

B.7	Example of Artificial Intelligence	325
B.8	Example of Assembly Language Programming	325
B.9	Example of Automata Theory	326
B.10	Example of Combinatorics	326
B.11	Example of Compiler Design	327
B.12	Example of Computational Geometry	327
B.13	Example of Computational Linguistics	328
B.14	Example of Computational Theory	328
B.15	Example of Computer Architecture	329
B.16	Example of Computer Architecture(Page 2)	330
B.17	Example of Computer Architecture II	330
B.18	Example of Computer Graphics	330
B.19	Example of Computer Models	331
B.20	Example of Computer Organization and Assembly Language	331
B.21	Example of Computer Organization and Assembly Language(Page 2)	332
B.22	Example of Computer Science Capstone	333
B.23	Example of Computer Science Capstone II	334
B.24	Example of Computer Science Capstone III	334
B.25	Example of Computer Science Honors Thesis	334
B.26	Example of Computer Vision	334
B.27	Example of Computing for Other Majors	335
B.28	Example of Cross-disciplinary Project	335
B.29	Example of Cryptography	335
B.30	Example of Data Communications and Networking	335
B.31	Example of Data Communications and Networking (Page 2) $\ \ldots \ \ldots$	336
B.32	Example of Data Structures	337
B.33	Example of Data Structures(Page 2)	338
B.34	Example of Data Structures And Algorithms	339
B.35	Example of Data Structures And Algorithms II	340

B.36	Example of Data Structures and Algorithms Using OO	340
B.37	Example of Database Concepts	340
B.38	Example of Database Concepts(Page 2)	341
B.39	Example of Discrete Mathematics	342
B.40	Example of Distributed Computing	343
B.41	Example of Finite Structures	343
B.42	Example of Functional Programming	343
B.43	Example of Genomics and Computational Molecular Biology	343
B.44	Example of Graph Theory	344
B.45	Example of Great Theoretical Ideas In Computer Science	344
B.46	Example of High Performance Computing	344
B.47	Example of Honors	344
B.48	Example of Human Computer Interface	345
B.49	Example of Independent Study	345
B.50	Example of Independent Study II	346
B.51	Example of Information Retrieval	346
B.52	Example of Information Structures	346
B.53	Example of Interacting with Data	347
B.54	Example of Internet Auctions: Theory And Practice	347
B.55	Example of Internship	347
B.56	Example of Introduction To Computing Using Matlab	348
B.57	Example of Introduction To Engineering	348
B.58	Example of Introduction To Programming	348
B.59	Example of Introduction to Computer Science	349
B.60	Example of Linear Programming	349
B.61	Example of Logic Design	350
B.62	Example of Machine Organization	350
B.63	Example of Mathematics Of Computer Science	350
B.64	Example of Media Computing	351

B.65 Example of Microcomputers		851
B.66 Example of Microcontroller Arch	hitecture Programming 3	851
B.67 Example of Numerical Methods		852
B.68 Example of Numerical Methods	II	852
B.69 Example of Object Oriented Pro	$pgramming \ldots 3$	353
B.70 Example of Object-Oriented Des	sign	353
B.71 Example of Operating Systems		854
B.72 Example of Operating Systems(Page 2) $\ldots \ldots \ldots \ldots 3$	355
B.73 Example of Operating Systems	[I	855
B.74 Example of Operations Research	1	856
B.75 Example of Operations Worksho	рI 3	856
B.76 Example of Parallel Computing		856
B.77 Example of Perspectives On Con	mputing 3	856
B.78 Example of Pervasive Information	on Systems	857
B.79 Example of Portfolio		857
B.80 Example of Problems Solving .		857
B.81 Example of Program Design		858
B.82 Example of Program Design II		858
B.83 Example of Programming I		859
B.84 Example of Programming I(Pag	e 2) 3	860
B.85 Example of Programming II		860
B.86 Example of Programming II(Pag	ge 2) $\ldots \ldots \ldots \ldots \ldots \ldots 3$	861
B.87 Example of Programming Langu	1ages	862
B.88 Example of Programming Langu	$ages(Page 2) \dots \dots \dots \dots 3$	863
B.89 Example of Programming Langu	ages II	8 64
B.90 Example of Programming Metho	odology 3	8 64
B.91 Example of Programming Studie	o	8 64
B.92 Example of Programming in An	other Language 3	865
B.93 Example of Reasoning About Co	omputation And Uncertainty 3	865

B.94 Example of Scientific Computing
B.95 Example of Security
B.96 Example of Seminar
B.97 Example of Seminar II
B.98 Example of Senior Design I
B.99 Example of Senior Design II
B.100 Example of Social and Ethical Issues in Computer Science 368
B.101 Example of Software Design
B.102 Example of Software Development
B.103 Example of Software Engineering
B.104Example of Software Engineering(Page 2)
B.105 Example of Software Engineering II
B.106 Example of Software Systems
B.107 Example of Software Testing
B.108 Example of Sophomore Seminar
B.109 Example of Structure of Programs
B.110 Example of Survey Of Information Assurance And Security 372
B.111 Example of Systems
B.112 Example of Systems II
B.113 Example of Systems Programming
B.114Example of Technical Communication And Analysis
B.115 Example of The Computing Professional
B.116 Example of Topics In Computer Science
B.117 Example of Transforming Reality By Computer
B.118 Example of Unix Programming
B.119 Example of Unix Systems
B.120 Example of Web Information Retrieval
B.121 Example of Web Programming
B.122 Example of Web Technologies

C.1	Dice Skills List $[6]$	378
C.2	Simply Hired Computer-Related Categories [11]	379
C.3	Career Builder Computer-Related Categories [4]	380
C.4	Yahoo Hot Jobs Computer-Related Categories	380

List of Figures

1.1	New Undergraduate Computer Science Majors[112] \ldots \ldots \ldots	5
1.2	Curriculum Timeline	15
1.3	Structure of the Computing Curricula Series [99] (Used with Permission from ACM)	15
1.4	Research Process Design	21
1.5	Typical Curriculum Introduction	22
1.6	Typical Curriculum Required Course List	23
2.1	Research Stage 1: Curricular Presentations	33
2.2	The "Type of School" page in College MatchMaker [29]	35
2.3	The "Location" page in College MatchMaker [29]	36
2.4	A Sample Result Set from College MatchMaker [29]	40
2.5	An Example of Information Provided by the College Board for an Institution	45
2.6	The College and Course Database Model	46
2.7	Box and Whiskers Presenting Comparison of Registration IDs Between 2000 and 2010 Courses	65
2.8	Box and Whiskers Presenting Comparison of Registration IDs Between 2000 and 2010 Courses	66
2.9	Box and Whiskers Presenting Comparison of Registration IDs Between 2005 and 2010 Courses	67
2.10	Box and Whiskers Presenting Comparison of Registration IDs Between 2005 and 2010 Courses	68
2.11	The Typical Curriculum	70
3.1	Research Stage 2: Technology Job Review	73
3.2	Job-Focused Curriculum Introduction	88
3.3	Job-Focused Curriculum Required Course List	90
3.4	The Entire Job-Focused Curriculum	92
4.1	Research Stage 3: Student Opinions and Ideas for Developing a Student-Focused Curriculum	93

4.2	High School Technology Survey - Page 1	97
4.3	High School Technology Survey - Page 2	98
4.4	High School Technology Survey - Cover Sheet	100
4.5	Number of Computers in the Home	108
4.6	Planning Timeline	116
4.7	The Web Application Architecture	146
4.8	The Web Application Basic Flow	147
4.9	The Database Diagram	148
4.10	Iteration #2 Example of Single Item $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	151
4.11	Iteration #3 Example of a single item $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	153
4.12	The Results of the Concentrations Poll	169
4.13	Student-Focused Curriculum Introduction	174
4.14	Student-Focused Curriculum Concentrations Introduction	175
4.15	Student-Focused Curriculum Core Required Courses	176
4.16	Student-Focused Curriculum Core Required Courses	177
5.1	Research Stage 4: Survey of Prospective Students	179
5.2	Curriculum Presentation Survey Instruments	180
5.3	Survey Flow for the first survey instrument	181
5.4	Introduction Block of the First Survey Instrument	182
5.5	Introduction of the Typical Curriculum in the First Survey Instrument	183
5.6	Introduction of the Job-Focused Curriculum in the First Survey Instrument	183
5.7	Arranging concentrations in the Job-Focused Curriculum in the First Survey Instrument	184
5.8	The "What You Will Be Studying" Section of the Typical Curriculum in the First Survey Instrument	185
5.9	The "What You Will Be Studying" Section of the Job-Focused Curriculum in the First Survey Instrument	186
5.10	Both the Introduction and the "What You Will Be Studying" Sections of the Typical Curriculum in the First Survey Instrument	187

ļ	5.11	Both the Introduction and the "What You Will Be Studying" Sections of the Job-Focused Curriculum in the First Survey Instrument	188
ļ	5.12	Students reflect on their interest in Studying Computer Science for the Typical Curriculum in the First Survey Instrument	190
ļ	5.13	Students reflect on their interest in Studying Computer Science for the Job-Focused Curriculum in the First Survey Instrument	190
!	5.14	Technology Block in the First Survey Instrument	191
,	5.15	Technology Block in the First Survey Instrument	192
,	5.16	Technology Block in the First Survey Instrument	193
,	5.17	Survey Flow for the Second Survey Instrument	194
!	5.18	Introduction Block in the Second Survey Instrument	194
;	5.19	The Introduction to the Typical Curriculum in the Second Survey Instrument	196
ļ	5.20	The Introduction to the Student-Focused Curriculum in the Second Survey Instrument	197
,	5.21	The Instructions for Evaluating the Typical Curriculum Introduction in the Second Survey Instrument	197
ļ	5.22	The Instructions for Evaluating the Student-Focused Curriculum Introduction in the Second Survey Instrument	197
ļ	5.23	Rating the Typical Curriculum Introduction in the Second Survey Instrument	198
,	5.24	Rating the Student-Focused Curriculum Introduction in the Second Survey Instrument	199
1	5.25	Motivating Ideas from the Typical Curriculum Introduction in the Second Survey Instrument	200
ļ	5.26	Motivating Ideas from the Student-Focused Curriculum Introduction in the Second Survey Instrument	200
!	5.27	Rating the Typical Curriculum Required Courses in the Second Survey Instrument	202
1	5.28	Rating the Student-Focused Curriculum Required Courses in the Second Survey Instrument	203
;	5.29	Motivating Ideas from the Typical Curriculum Required Courses in the Second Survey Instrument	204

5.30	Motivating Ideas from the Student-Focused Curriculum Required Courses in the Second Survey Instrument	204
5.31	Interest In the Typical Curriculum in the Second Survey Instrument	206
5.32	Interest In the Student-Focused Curriculum in the Second Survey Instrument	207
5.33	Interest In the Typical Curriculum in the Second Survey Instrument	209
5.34	Interest In the Student-Focused Curriculum in the Second Survey Instrument	210

Chapter 1

Introduction

Colleges and Universities that utilize the World Wide Web communicate with a broad audience of prospective students. These institutions disclose information about themselves from historical and supporting information to admissions procedures and curricula in an attempt to provide prospective students with the information they need to choose an institution. Prospective students turn to college and university web sites as their primary source of information in choosing where to attend [53, 80, 106]. However, even with the ability for prospective students to obtain information immediately through a college web site, the number of students enrolling in Computer Science today is a fraction of what it was ten years ago [67, 71, 111, 112].

This dissertation focuses on the question, "Is the reason more prospective students are not choosing to study Computer Science related to the presentation of the curricula and other information about the major?" This study explores the possibilities this question presents from two perspectives. The first focuses on the presentation of Computer Science curricula on college and university web sites. The second analyzes high school students' reactions to the presentation of Computer Science curriculum.

1.1 Three Perspectives: College Presentation, Business Opportunities, and Prospective Students

The decline of enrollment in computing majors in colleges and universities is a complex problem. Today's students are "techno-savvy and capable of accessing greater breadth of information [37]" than their parents yet many are not pursuing computer degrees in college [112].

In the past, computing educators had the luxury of an increase of students enrolling in their programs. In fact, universities could not handle the numbers of students wanting to major in Computer Science [24, 51, 63]. Students during that time seemed to be motivated to study computing regardless of what was in the catalog or on the web site. What was communicated only helped to differentiate programs. With the national decline of the number of undergraduate students electing to study computing, that is no longer the case. Are Colleges and Universities communicating the major in a relevant way?

The first part of this study examines colleges' and universities' presentations of their Computer Science curricula and how they relate to current computing issues. This study also evaluates college and university curricula from five and ten years ago to see whether it has evolved over time in order to keep in sync with the ever-changing computing discipline.

The second part of this study explores business job recruitment and the method of presenting job opportunities. This study also seeks a different way of presenting Computer Science that may have a greater appeal to prospective students.

The third part of this study analyzes the reactions prospective students have to the Computer Science curricula presented to them. This study also seeks to understand

the perceptions of these students about computing. What excites this up-coming generation about computers? What part of computing would they love to study? How can this generation's sophistication with technology be encouraged, igniting their passions about computing, and directing them to pursue studying those passions?

Students who are enrolling in colleges and universities today do not understand what a Computer Science major learns [39]. When viewing the curriculum do they see course titles that they cannot relate to? Having grown up with computers and being comfortable using technology, course titles and descriptions they cannot relate to does not inspire them to pursue studying Computer Science. This generation values more than income and status [37], they want to make a difference [87].

As these issues are explored, new curricular presentations are developed and reactions are once again analyzed to determine if there is a better way to communicate what the study of computing offers.

1.2 The Rise and Fall of Enrollment

This research's guiding question was precipitated by the decline in enrollment over the last decade. This problem has been tracked by the Computer Research Association (CRA). The CRA, formed in 1972 as the Computer Science Board, "seeks to strengthen research and advanced education in computing and allied fields [21]." CRA is committed to four mission areas related to computing research as laid out by the organization's mission statement [21]:

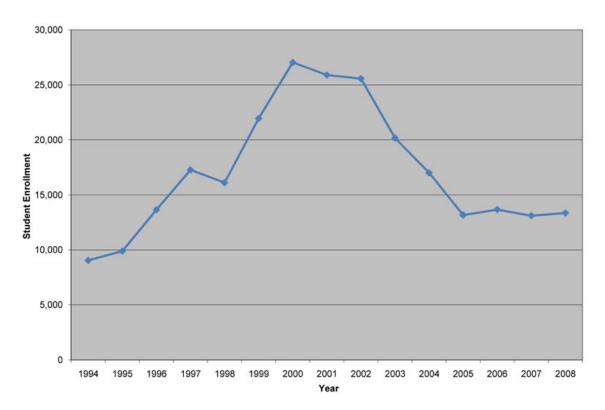
- influencing policy in computing research
- collecting and disseminating information

- ensuring that the need for talented and well-educated practitioners is met
- promoting community

The Taulbee survey, a research tool used by the Information branch of the CRA, is given to colleges and universities in the fall to collect data from the previous school year. The return rate is very high, an average of 79%, lending to the validity of the survey [111]. Orrin E. Taulbee of the University of Pittsburgh, for whom the survey is named, conducted these surveys for the Computer Science Board from 1974-1984 [20]. The survey collects data regarding enrollment statistics for Bachelors, Masters, and Ph.D.s majoring in Computer Science and Computer Engineering.

In 1994, 9,041 students enrolled in undergraduate degrees in Computer Science [16]. The number climbed over the next 5 years to 27,040 students with a single dip in 1998 of 16,103 (see Figure 1.1 and table 1.1). This represents a 199% increase in enrollments over those six years.

Over the years 2000, 2001, and 2002 the number of students enrolling slipped from the high of 27,040 students to 25,565, a 5.5% drop (see Table 1.1 and Figure 1.1) [33, 34, 105].


After 2002 the number of students enrolling in undergraduate degrees in Computer Science began a free fall, stabilizing in 2005 at 13,165 students, 46% higher than the enrollment in 1994 but 51% lower than the peak in 2000. Between the fall semester of 2005 and the fall semester of 2008, enrollment vacillated between -4.07% and 3.78% with the fall of 2008 experiencing an increase of 1.89% as compared to the previous year and 1.44% as compared to 2005. Enrollment beginning with the initial decline in the fall of 2000 to the fall of 2008 dropped 102.5% (see Figure 1.1 and

Year	New Students	Year	New Students
1994 1995 1996 1997 1998 1999 2000	$\begin{array}{c} 9,041 \ [16] \\ 9,885 \ [17] \\ 13,644 \ [18] \\ 17,261 \ [72] \\ 16,103 \ [71] \\ 21,940 \ [67] \\ 27,040 \ [33] \end{array}$	2001 2002 2003 2004 2005 2006 2007 2008	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 1.1: The Rise and Fall of Enrollment

Table 1.1) [105, 113, 108, 109, 110, 111, 112].

Computer Science Enrollment

Figure 1.1: New Undergraduate Computer Science Majors[112]

Several changes to the methods of reporting data may cause some discrepancies in the actual changes in enrollment. In the past many colleges and universities

reported pre-major and major enrollment data. Stuart Zweben in the 2007-2008 Taulbee Report [112] indicated that these numbers may not represent the same statistical data since some of these colleges and universities no longer use pre-majors and combine all students, pre-majors and majors, in a single count. He also specifies that this is the first year Information programs are being tracked, programs that include Information Science, Information Systems, Information Technology, and Informatics.

John Sargent in his article, An Overview of Past and Projected Employment Changes in the Professional IT Occupations [96], attributes the decline to many factors, including the dot-com bust, the end of work of Y2K, the terrorist attacks of September 11, 2001 and their related effect on the U.S. economy, a downturn in corporate IT spending, the brief 2001 recession, productivity increases, and the offshore outsourcing (off-shoring) of IT work. These factors may have contributed to the initial decline, but have they contributed to the continual decline? Each of these factors suggest that prospective students fear that jobs will not be available to them when they graduate.

1.3 Job Projections Over the Next Ten Years

Though the decline in enrollment is so profound, the Bureau of Labor Statistics (BLS) of the U.S. Department of Labor projects that there will be plenty of opportunities in the years to come for computer-related jobs. Every two years the BLS prepares projections for the next ten years covering industry and occupational employment [55]. The last projections were done in November of 2007, encompassing the years between 2006 to 2016. Computer-related jobs are projected to fare well in next ten years.

The BLS projects the growth of both industries and individual occupations. In industry growth, two of the computer-related industries projected to grow the fastest include the computer systems design and related services industry and the software publishers industries, projected to grow at an annual rate of 6.2% [54].

In relation to occupational growth, of the top thirty fastest growing occupations in the decade between 2006 and 2016, five of them are computer-related. In fact the projected fastest growing occupation is the networking systems and data communications analyst, expected to grow by 53.4% [52]. The other computer-related occupations in the list of thirty include computer software engineers for applications at position four, computer systems analysts at position 23, database administrators at position 24 and computer software engineers for systems software at position 25 (see Table 1.2) [52]. Employment projections, which include jobs due to both growth and net replacements, for Computer Science occupations are predicted to grow 47.6% [52]. In other words, the BLS predicts that 1 in 19 job opportunities will be in the Computer Science workforce [52].

Rank	Occupation	Percent Change	Annual Salary Range
1	Network systems and data communications analysts	53.4	Highest
4	Computer software engineers, applications	44.6	Highest
23	Computer systems analysts	29.0	Highest
24	Database administrators	28.6	Highest
25	Computer software engineers, systems software	28.2	Highest

Table 1.2: Fastest Growing Occupations, 2006-2016 [52]

Even with this bright future of Computer Science related jobs, "signs of recovery from the sharp decline [of computer science graduates] that has lasted several years have yet to materialize [111]." How will higher education address these facts? College and university bound students need a clear picture of a relevant curriculum

they understand that relates to their everyday experience.

1.4 Other Steps Taken to Address the Declining Enrollment

Colleges and universities have been active in trying to solve this problem of the declining enrollment by tackling research in recruitment and retention. There have also been other organizations such as the Association for Computing Machinery (ACM)and the Institute of Electrical and Electronics Engineers, Inc. (IEEE)that have developed curricular guides to help colleges and universities keep in sync with the rapid growth of the discipline. The first part of this research examines the presentation of Computer Science curricula. In order to put the study in context it is important to understand the research that has gone into recruitment and retention as well as the work that has gone into the development of the Computer Science curricula over the last few decades.

Many articles have been published that promote changes to computing courses students take in their first year of college [25, 40, 43, 44, 57, 68, 73, 92]. The premise is that changing the content and delivery methodology will aid in recruiting new students as well as retaining current students. However, the names of these courses and how they are presented on the school's website remain the same. For example at one college the courses listed as CS332 Computer Organization and Architecture and CS341 Systems Analysis and Design are exactly the same in 1998 as it is in 2008. The details are explored further in chapter 2.

The recommendations of many of these research articles assume that the students will be exposed to new and exciting ideas within the initial courses which will motivate them to continue studying computing. For this to happen, however, they presume that the students will come. But students won't come if their perception to

begin with is flawed. If they view computing majors as out-dated or unappealing, they will not enroll in the initial courses, and therefore, not be swayed by the exciting content. If the curricula displayed were relevant to these prospective students, they might enroll in at least one of the initial courses, then the content of those courses could be the additional motivation for those students to pursue the computing degree.

1.4.1 Research Addressing Declining Enrollment

One area of research attempting to address the declining enrollment problem focuses on developing methods to identify those students who would succeed in a computing program [26, 27, 41, 65]. Some identify a student's abstraction ability as an indicator of success [26, 65], while others show previous academic and computer experience and self-perception as key [27]. One study finds a student's performance in the curriculum as a prediction of future performance [41]. While understanding factors that contribute to the success of students is important to help those students in the program succeed, it still fails to get the students into the program.

Another research area analyzes undergraduate recruitment and the success of those students [15, 38]. One study finds the qualifications of undergraduate students enrolling in Computer Science and their success in the program [15] while another uses the PSAT/NMSQT scores as an indicator of success in an Advanced Placement course [38]. Determining characteristics that may indicate the potential for higher success in Computer Science helps the selection process. However, in an age of declining enrollments, rejecting students without these characteristics may not be an option.

Yet another research area studies the factors that motivate students to choose a

major in the field of computing [14, 64]. Asli Akbulut and Clayton Looney address the question, "from the students perspective, what are the factors that motivate students to choose a major in the field of computing [14]?" Their model of four interacting factors shows how the first two factors, "Self-Efficacy" and "Outcome Expectations" motivate the third factor, "Interest" which in turn motivates the final factor, "Chosen Goals". This is the closest study to understanding student choices as they pursue a degree, however, it still deals with students already enrolled in an introductory information systems course.

None of these research areas that attempt to address the declining enrollment problem have focused on the presentation of the Computer Science major to prospective students and the reaction of these students to what they are presented.

1.4.2 Computer Science Curriculum Evolution

In conjunction with research relating to recruitment and retention, Computer Science curricula has evolved. The rate of the growth of technology is exponential [56, 74, 76]. Ray Kurzweil has stated, "we find not just simple exponential growth, but 'double' exponential growth, meaning that the rate of exponential growth is itself growing exponentially [75]." Because of this growth several organizations such as the Association for Computing Machinery, Inc., the Institute of Electrical and Electronics Engineers, Inc, and the Liberal Arts Computer Science Consortium have developed, over the last four decades, curricular guidelines to help colleges and universities keep up with the rapid change of technology.

In 1962 the Association for Computing Machinery, Inc. (ACM) formed a subcommittee called the Curriculum Committee on Computer Science (C³S) and in

1964 C³S began working on curricular recommendation [22]. In 1965 the committee published its first report entitled, "An undergraduate program in computer science—preliminary recommendations [47]" followed by a revised edition in 1968 entitled, "Curriculum '68 [22]". Table 1.3 presents the curriculum recommendations of the committee's first report.

Recommendation Level	Course Name	Type of Course
Required	Introduction to Algorithmic Processes Computer Organization and Programming Numerical Calculus Information Structures Algorithmic Languages and Compilers	Basic Course Basic Course Numerical Algorithms Basic Course Theory Course
Highly Recommended	Logic Design and Switching Theory Numerical Analysis I Numerical Analysis II Computer and Programming Systems	Basic Course Numerical Algorithms Numerical Algorithms Basic Course
Other	Combinatorics and Graph Theory Systems Simulations Mathematical Optimization Techniques Constructive Logic Introduction to Automata Theory Formal Languages Heuristic Programming	Basic Course Models and Apps Models and Apps Theory Course Theory Course Theory Course Models and Apps

Table 1.3: Curricular Recommendations 1965 [47]

In Curriculum '68, the committee recommended specific academic programs and courses in computer science. In this first curriculum guide, ACM developed course descriptions for twenty-two courses along with prerequisites, detailed outlines, and annotated bibliographies for each course [22, 2]. It was considered to be a tremendous guide, "pointing the way to a discipline of computer science [32]." According to Gopal Gupta, this curriculum was the "most important CS education

milestone of the 1960s [62]".

The next guideline related to computing curriculum published in 1978 by the ACM titled, "Curriculum '78" [23] was criticized for simply following curricula set out by large universities [32]. Some go so far as to say, "Curriculum '78 has become obsolete as a guiding light for maintaining contemporary high-quality undergraduate degree programs and cannot serve as a basis for developing a new degree program in computer science within a liberal arts setting [58]."

Curriculum '78 updated Curriculum '68 and continued providing colleges and universities with courses, prerequisites, and outlines as it did in Curriculum '68. Courses were divided into those considered core courses and those considered elective courses (See Table 1.4) [23]. Though criticized, Curriculum '78 "became the model curriculum that many computing programs in the United States and throughout the world followed [59]." Comparing the course titles in Curriculum '78 to course titles in college and university curricula presented today, you will notice that many of them are identical.

In 1977 and then in 1983 the Institute of Electrical and Electronics Engineers, Inc. (IEEE) published two curriculum guides for Computer Science as it relates to Engineering, "A Curriculum in CS and Engineering [35]" and "The 1983 Model Program in Computer Science and Engineering [66]". In 1984 they published "The IEEE Computer Society Model Program in Computer Science and Engineering" that presented a 13 subject area core curriculum [36].

In 1984 and 1985, the ACM published two articles focused on the first two computing courses, CS1 and CS2, both identifying topics to cover in the courses and suggesting a program design and implementation [69, 70]. These were the first publications focused on addressing the content of the first year courses.

Core Courses

- CS 1. Computer Programming I
- CS 2. Computer Programming II
- CS 3. Introduction to Computer Systems
- CS 4. Introduction to Computer Organization
- CS 5. Introduction to File Processing
- CS 6. Operating Systems and Computer Architecture I
- CS 7. Data Structures and Algorithm Analysis
- CS 8. Organization of Programming Languages

Elective Courses

- CS 9. Computers and Society
- CS 10. Operating Systems and Computer Architecture II
- CS 11. Database Management Systems Design
- CS 12. Artificial Intelligence
- CS 13. Algorithms
- CS 14. Software Design and Development
- CS 15. Theory of Programming Languages
- CS 16. Automata, Computability, and Formal Languages
- CS 17. Numerical Mathematics: Analysis
- CS 18. Numerical Mathematics: Linear Algebra

Table 1.4: The List of Courses in Curriculum '78 [23]

In 1989 Peter Denning et. al wrote a paper, "Computing as a Discipline [45]", identifying nine areas that a computing curriculum would need to address. This report became "the definition of the computing discipline [59]."

The ACM and IEEE joined forces in 1991, using Denning's work as a catalyst for Curricula '91 [104]. This was the first guideline that broke away from the earlier format of course layout. In this guideline the ACM and IEEE took the nine computing areas addressed by Denning et. al and expanded on them, incorporating what are now known as "Knowledge Units [104]".

Between the years 2001 and 2008, the ACM and IEEE have published several volumes of curricular guidelines addressing the different computing disciplines as

- Computing Curricula 2001 [2]
- Model Curriculum and Guidelines for Undergraduate Degree Programs in Information Systems [61]
- Computer Engineering 2004 [102]
- Software Engineering 2004 Curriculum Guidelines for Undergraduate Degree Programs in Software Engineering [103]
- Computing Curricula 2005 The Overview Report [99]
- Information Technology 2008 Curriculum Guidelines for Undergraduate Degree Programs in Information Technology [79]

Beginning in 1986, the Liberal Arts Computer Science Consortium (LACS) began publishing its own Model Curriculum for a Liberal Arts Degree in Computer Science as a response to the ACM and IEEE guidelines. The first, "A Model Curriculum For A Liberal Arts Degree In Computer Science", presented courses in three categories, introductory, core, and electives (See Table 1.5) [58]. The later guideline, "A 2007 Model Curriculum for a Liberal Arts Degree in Computer Science," categorized the courses as introductory, intermediate core, advanced electives and undergraduate projects and research [46], and compared courses to the ACM/IEEE Curricula 2001.

Figure 1.2 provides a timeline of the different organizations and the curricular guidelines each developed.

The current curricular guideline published by the Joint Task Force on Computing Curricula of the IEEE Computer Society and the Association for Computing Machinery, entitled, "Computing Curricula 2001 Computer Science" is one of several addressing the different kinds of undergraduate degree programs in computing [99]. Each program has its own curricular guideline (see Figure 1.3).

"Computing Curricula 2001 Computer Science" lays out fourteen knowledge focus

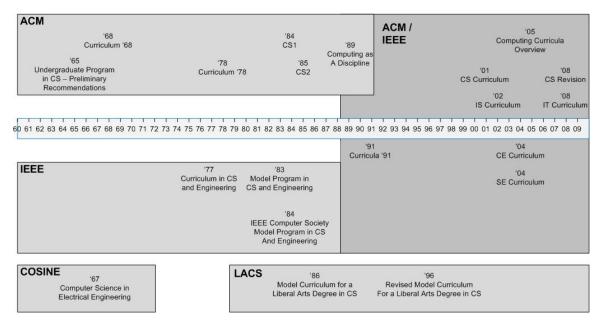


Figure 1.2: Curriculum Timeline

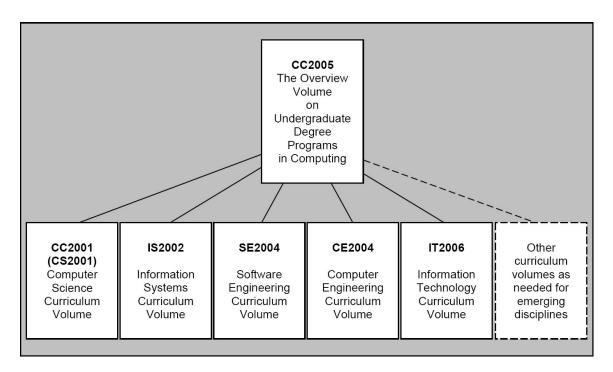


Figure 1.3: Structure of the Computing Curricula Series [99] (Used with Permission from ACM)

CS1		Intro
CS2		Intro
CO1	Principles of Computer Organization	Core
$\rm CO2$	Algorithms	Core
CO3	Theory of Computation	Core
CO4	Principles of Programming Languages	Core
EL1	Compiler Design	Elective
EL2	Artificial Intelligence	Elective
EL3	Operating Systems	Elective
EL4	Database Principles	Elective
EL5	Computer Architecture	Elective
EL6	Networks	Elective
EL7	Simulation	Elective
EL8	Graphics	Elective
EL9	Numerical Methods	Elective
EL10	Semantics and Correctness	Elective
EL11	Topics	Elective

Table 1.5: LACS Curricular Guideline 1986

groups "that together represent the body of knowledge for computer science at the undergraduate level [2]" (See Table 1.6). This curricular guideline provides colleges and universities with descriptions of each knowledge group area, and a list of topics with the area, indicating which are considered core and which are elective. A description is given for each topic along with multiple learning objectives. The guide then goes into full descriptions of sample courses that implement the core topics. The attempt is to give colleges and universities that desire autonomy the flexibility to build courses according to their needs while giving samples to help lead others.

The curriculum developed by the Liberal Arts Computer Science Consortium entitled, "A 2007 model curriculum for a liberal arts degree in computer science" has a more specific structure than the Computing Curricula 2001 Computer Science [46]. It proposes "three basic courses in computer science followed by a set of 4 courses capturing what is the essence or core of the discipline, followed by 3 electives made up of advanced courses for depth and applications courses for breadth, accompanied

or followed by a culminating project or thesis [46, p. 4]." The guide then describes the suggested courses based on the Computer Curricula 2001 Computer Science.

Discrete Structures (DS)	Human-Computer Interaction (HC)
Programming Fundamentals (PF)	Graphics and Visual Computing (GV)
Algorithms and Complexity (AL)	Intelligent Systems (IS)
Architecture and Organization (AR)	Information Management (IM)
Operating Systems (OS)	Social and Professional Issues (SP)
Net-Centric Computing (NC)	Software Engineering (SE)
Programming Languages (PL)	Computational Science (CN)

 Table 1.6:
 The Fourteen Knowledge Focus Groups [2]

1.4.3 Research Broadening Higher Education's Perspective

Another area of research addressing the declining enrollment seeks to align higher education with organizations of which graduates will become a part. Curricular guidelines attempt to define computing, address necessary knowledge, and suggest required courses or course topics to aid schools in developing curricula. This last area of research attempts to take a broader view, expanding the higher education's perspective to include the working world.

In an attempt to promote science, the National Science Foundation (NSF) was established [90]. In September of 2000 NSF disbursed the first grant under the Partnership for Innovation, created to support "creative interaction in local communities between higher education institutions, government agencies, foundations and the private sector [91]." One organization within the NSF that is focused on Computing is the Directorate for Computer and Information Science and Engineering (CISE) [88] and has awarded over 2,000 grants to support its mission.

One study that is being conducted by a partnership between Argonne National Laboratory, Joliet Junior College, and Governors State University has been funded

by CISE to "focus on the preparation of students for a computing and technology workplace that is increasingly diverse and transdisciplinary[77]." According to their proposal, they will work with the "higher education community, computing professionals from across the regional industrial sectors, the research community, and the not-for-profit community ... identifying the relevant knowledge, skills, and other qualities required for computing professionals [77]."

"The major goals of the project are: 1) establish partnerships and leaderships in the Computer & Information Science & Engineering (CISE) community in the Chicago metropolitan region that focus on transforming computing education, 2) build an innovative, transdisciplinary model for undergraduate computing education, 3) create student learning experiences especially accessible for the adult learner.

As a model for developing undergraduate computing education, the outcomes of this project may define a new focus on preparation for the diverse computing and technology workplace [77]."

1.5 Children Today Grow Up Exploring Computer Science

Children explore the world they live in and have learned concepts of Physics, Chemistry, Biology, English and Mathematics through play. When attempting to throw a football these early learners experiment with what throwing angle will give them the longest pass. When playing in the kitchen, children are interested in learning what happens when you combine different ingredients. Twenty years ago children did not have anything in their lives that they could explore and learn about Computer Science. Today's children have grown up with computers in their homes.

With this background, can today's prospective students connect what they have informally learned about Computer Science with what colleges and universities are presenting?

The next generation of college and university students, called Generation Y are the students enrolling today. Born in the time period between the late 1970's [19, 37, 89, 94, 107] and the early 1990's [37, 89, 94, 107] to early 2000's [19] these students, also known as the Net Generation or the Millennials, are technologically savvy having grown up with a computer in the home since nursery school [37, 89, 107]. They will spend approximately 1/3 of their lives on the Internet, their primary source of news and information [37]. Having an average of two email addresses, this generation's primary mode of communication is e-mail [37]. They are comfortable using video games, cell phones, PDAs, downloading music, MP3 players, and instant messaging [37, 107].

Students considering courses of study for their college career may not choose a computing major due to a lack of understanding of what is involved in the major. Dr. Carter, in a study of 836 high school students found that they did not choose computing as a major because they had an incorrect perception of the field or no perception at all. "A large percentage (50%) of students is opposed to CS because they imagine computer scientists as sitting in front of computers and programming all day. The vast majority of students could not provide a description of what Computer Science majors learn. [39]."

1.6 Structure of this Research

The purpose of this research is first, to explore how colleges present computer-related curricula on the World Wide Web and second, to examine high

school students' understanding of it. The motivation for this study lies in the drop in enrollment of students pursuing computing-related majors and the need to challenge higher education to change the way it communicates courses of study.

The four tracks of this research are divided into segments, illustrated in Figure 1.4, designed to shed light on the disconnect between how colleges and universities present computer-related majors and how high school students perceive studying those majors. The segments as listed below are further developed in the following chapters of this dissertation.

- Track 1: Curricular Presentations
 - College Curricular Review
- Track 2: Technology Job Review
 - Technology Job Review
- Track 3: Student Opinions and Ideas for Developing a Student-Focused Curriculum
 - HS Student Technology Survey
 - HS Student Focus Groups
 - College Student Delphi Study
- Track 4: Survey of Prospective Students
 - Survey Instrument 1: Typical Versus Job-Focused Curricula Survey
 - Survey Instrument 2: Typical Versus Student-Focused Curricula Survey

Figure 1.4 provides an overview of the steps and processes followed during the research. The figure also identifies the intended output for each segment that will be

used in the curricular surveys. Each of the segments are briefly described in the following sections.

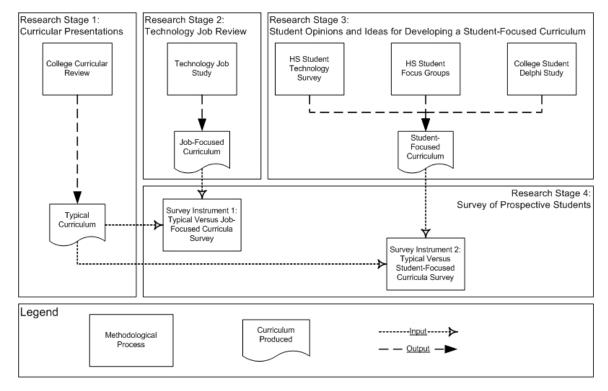


Figure 1.4: Research Process Design

1.6.1 Stage 1: Curricular Presentations

The first stage of this research, Curricular Presentations, focuses on how colleges and universities present their Computer Science major. The segment within this stage, College Curricular Review, evaluates college and university Computer Science curricula attempting to identify current components of the curricula available on the web. The purpose of this segment is to get an understanding of what students may see when looking into a college or university and how that might shape their opinions of studying computers. Even though there are at least five different titles for computer-related majors, namely Computer Science, Computer Engineering, Information Systems, Information Technology, and Software Engineering (which add to student confusion) [99], this research focuses on the Computer Science major.

The following questions guide this portion of the research:

- 1. How is Computer Science portrayed in documents available to students via the Internet?
- 2. What courses do colleges and universities offer and how do those course titles and descriptions compare to earlier versions of their curricula.

The result of this research activity is an example of a Computer Science Curriculum that a student may encounter when exploring options for majoring in Computer Science. Figure 1.5 illustrates a typical introduction to the major. Figure 1.6 illustrates a typical required course list. These figures illustrate the "Typical" Computer Science Curriculum that will be used in further research and is explained further in Chapter 2.

In	tro	du	cti	on	
		uu		011	

	Science Major
changes in s highest proje	decade, rapid advances in technology, specifically digital technology, have lead to dramatic ociety and in the global economy. Computer- and technology-related fields claim some of the octed job growth in the United States, with software engineering, data communications, and systems analysis and administration among the most top-rated careers.
	prepared for lifelong learning in this rapidly evolving discipline. Typically, graduates take ositions in hardware and software systems application and design or continue their education ate level.
their college	king a Bachelor of Science degree in Computer Science will find a lot of flexibility in tailoring education. This program requires 48 credits of computer science courses, 12 credits of , and 8 credits of physics.

Figure 1.5: Typical Curriculum Introduction

1.6.2 Stage 2: Technology Job Review

The next stage of this research, Technology Job Review, evaluates industries promotion of computer related jobs by studying job postings. This research activity is aimed at reviewing technology job postings and the terminology used in those

Computer S	Science	
CS 101	Introduction to Computer Science	3
CS 110	Programming I	3
CS 120	Programming II	3
CS 201	Data Structures	3
CS 210	Algorithms and Complexity	3
CS 221	Computer Organization and Assembly Language	3
CS 230	System Programming Concepts	3
CS 310	Computer Hardware	3
CS 320	Programming Languages	3
CS 330	Computer Architecture	3
CS 410	Operating Systems	3
CS 494	Computer Science Capstone	3
Choose 4 o	f the following	
CS 332	Database Concepts	3
CS 380	Computer Graphics	3
CS 411	Software Engineering	3
CS 415	Data Communications and Networking	3
CS 420	Artificial Intelligence	3
CS 440	Compiler Design	3
Mathematio	25	
MATH 110	Calculus I	4
MATH 112	Calculus II	4
MATH 120	Discrete Structures	4

Figure 1.6: Typical Curriculum Required Course List

postings. The purpose is to get an understanding of what students and students' parents may see when looking at computer-related jobs and to include these findings in an alternate presentation of a Computer Science curriculum. The goal is not to rewrite the Computer Science curriculum but to re-present it in a relevant way. The following questions guide this portion of the research:

- 1. In what areas are jobs available?
- 2. What are the key buzz words used in industry and in job postings?
- 3. How do the keywords correlate to the course titles on college web sites?

The result of this research activity is a different presentation of the Computer Science major based on industry's promotion of computer-related jobs and keywords used in job advertisements and is further explained in Chapter 3.

1.6.3 Stage 3: Student Opinions and Ideas for Developing a Student-Focused Curriculum

The third stage of this research, Student Opinions and Ideas for Developing a Student-Focused Curriculum, contains three segments, HS Student Technology Survey, HS Student Focus Groups, and College Student Delphi Study. These segments focus on student perceptions of the Computer Science major and are further explained in Chapter 4.

HS Student Technology Survey

The purpose of the first segment within this stage of research, High School Student Technology Survey, is to gather student opinions relative to different aspects of technology. The key questions that guide this portion of the research are as follows:

- 1. What are the attributes of this generation that may affect their perception of studying computers in college and university?
- 2. What technology do they use, own, or want to own?
- 3. What experiences with computers have they had on their own and in school?
- 4. What technology keywords used today capture the interest to students?

The expected result of this research activity is a collection of student opinions to be used in developing a student-focused curriculum.

HS Student Focus Groups

The purpose of the second segment of this stage of research, High School Student Focus Groups, is to understand high school student impressions of computing, delving into the students' attitudes and perceptions of computers and their study of computers in college. The goal is to find out how they view the world of technology

around them, what their perceptions are of studying computing in college, and what their perceptions are of the job possibilities for those who study computing. The key questions that guide this portion of the research are as follows:

- 1. What excites high school juniors and seniors about computers?
- 2. What things do high school students look for when searching for a college and a major to pursue?
- 3. What do these students believe the job possibilities and opportunities are if they were to graduate with a Computer Science degree?

The expected result of this research activity is also a collection of student opinions to be used in developing a student-focused curriculum.

College Student Delphi Study

The third segment of this stage of research, the College Student Delphi Study, seeks to coordinate a Delphi Study with current College computing majors to ascertain their ideas of changes to the Computer Science curricula to increase interest in the major. The guiding questions in the Delphi Study are:

- 1. If you were looking into a computing program today, what things might generate more interest in pursuing the program further?
- 2. List all the ways you would change the presentation of the major that will be exciting and motivating to students who have computing potential.

The expected outcome of the Delphi Study is a list of specific ideas in how to present a Computer Science curriculum that is exciting and motivating to high

school students.

1.6.4 Stage 4: Survey of Prospective Students

The final stage of this research, Survey of Prospective Students, contains two surveys instruments designed to gauge high school student reactions to different presentations of the Computer Science curriculum. These surveys are developed and further explained in Chapter 5.

Typical Versus Job-Focused Curricula Survey

The first survey instrument within this stage seeks high school student reactions to the presentation of the Typical Curriculum that was developed in Stage 1 with the Job-Focused Curriculum developed in Stage 2. The goal of this segment is to determine how prospective students react to different presentations of the Computer Science curriculum. The key questions that guide this goal are as follows:

- 1. How important are the different components of the displayed curricula?
- 2. How important is the list of required courses and course titles?
- 3. How well do the students understand what they will be studying based on what is displayed?
- 4. How well do the students understand the types of jobs they could apply for based on what is displayed?
- 5. Has the curriculum they have been presented changed their opinion of studying Computer Science in college?

Typical Versus Student-Focused Curricula Survey

The purpose of the second survey within this stage of research is to gauge high school student reactions to the presentation of Computer Science curricula on the

World Wide Web, addressing the main purpose of this research: understanding the interconnection between how colleges present computer-related curricula on the World Wide Web and high school students' understanding of it. The key questions that guide this goal are as follows:

- 1. How important are the different components of the displayed curricula?
- 2. How important is the list of required courses and course titles?
- 3. How well do the students understand what they will be studying based on what is displayed?
- 4. How well do the students understand the types of jobs they could apply for based on what is displayed?
- 5. Has the curriculum they have been presented changed their opinion of studying Computer Science in college?

1.7 Research Hypotheses and Objectives

These stages and segments previously described layout the framework for the research methodology used in the following chapters. The hypotheses to guide this study are the following:

Hypothesis 1: When presented with a more relevant Computer Science curriculum than a typical curriculum today, students will be encouraged and motivated to enroll in the major.

Hypothesis 2: Colleges and Universities have not changed the way they display Computer Science curriculum over the last ten years. When compared with earlier

course catalogs, courses will have been added, but names of standard courses will remain the same.

Hypothesis 3: When asked about information technology, students react positively, enjoying its use.

Hypothesis 4: College Computer Science curricula do not correlate with job postings found on job search web sites nor with what is considered to be important areas in computing.

To successfully complete these segments, the following objectives were accomplished:

- 1. To survey Computer Science curricula available via the Internet from colleges and universities across the United States.
- 2. To survey computing issues over the last decade.
- 3. To survey job postings to gather information on how businesses describe computer related jobs.
- 4. To survey juniors and seniors at a local area high school to gather information data regarding their involvement in and enjoyment of computers.
- 5. To hold focus groups with juniors and seniors at a local area high school to ask the key questions related to their perceptions of computing, college, and job possibilities beyond college.
- 6. To model a Computer Science curriculum on the Internet that will take into account student perceptions and attitudes and gather feedback from the same juniors and seniors who took part in the focus groups.
- 7. To compare student reactions to the current curricula available on the Web

with the model developed that took into account student perceptions and attitudes.

1.8 Limitations of the Study

The data for this study was collected from students in a local area high school in Central Pennsylvania. Though they share many of the same attributes as students across the United States and possibly the world, they are the only ones involved in the majority of this study. The final survey, being available over the Internet, was opened to high school students across the United States. This study should prompt colleges and universities across the country to open lines of communication with high schools in their locale to better understand their constituents. Some of the same attitudes and perceptions will be seen and can be addressed by the way Computer Science is presented to those students.

The students who participated in this study live in the suburbs of Harrisburg, Pennsylvania. Some live in large homes of wealthy parents, others in row homes of blue-color workers. The results of this study can be generalized to similar groups of students in similar situations. The results may not adequately describe high school students in urban homes and schools.

There are other factors that contribute to the decline in enrollment in computer-related majors across this country other than how Computer Science is presented to potential students. This research focuses on a single parameter, yet one that is a major contributor to the disconnect between high school students and colleges and universities.

1.9 Overview of the Results of this Research

The results of the curricular surveys in the Technology Job Review stage and the Student Ideas of Computer Science stage seem to indicate that modifying the curriculum that students have access to can improve their interest level. For those participating in the survey that evaluated the Typical Curriculum, their interest level decreased as compared to their interest level at the beginning of the survey.

For those students who participated in the Typical Versus Student-Focused survey and are planning on attending college, 60% have looked at a curriculum online. Of these, 71% indicated that the online curriculum influenced their decision for a major. These results suggest that the methods employed by colleges and universities to communicate a program of study do influence student decisions and should be taken seriously.

Most of the students participating in the high school focus groups believe that studying computers in college guarantees a job after graduation. However, very few of these students intend on pursuing a computing degree. Only a few of these students have looked into Computer Science as a major. For them, changing how the Computer Science curriculum is presented on college web sites would not influence their current decision. The discussions in the focus groups that these students had relating to their experiences in computer-related courses seem to indicate that their perception of Computer Science is based on the course or courses they have taken that involve computers regardless of the discipline the course is associated with. For example, a business applications course can persuade students that studying Computer Science is simply learning how to use applications. The teacher of the course also influences their perceptions of Computer Science. If the teacher is boring, so is the subject matter.

1.10 Roadmap of dissertation

The remainder of this dissertation is organized as follows:

Chapter 2, College Curricular Review, encompassing the first stage of this research, evaluates college and university presentations of their Computer Science major over the last decade. The methodology, data collection, and results of the curricular survey are presented.

Chapter 3, Technology Job Review, encompassing the second stage of this research, presents the methodology, data collection, and results of two segments within this stage, Technology Job Study and the Typical Versus Job-Focused Curricula Surveys.

Chapter 4, Student Perceptions and Reactions to Computer Science Curricula, encompassing the third stage of this research, presents the methodology, data collection, and results of the four segments within this stage, HS Student Technology Survey, HS Student Focus Groups, College Student Delphi Study, and the Typical Versus Student-Focused Curricula Surveys.

Chapter 5, Summary and Reflection, wraps up the dissertation with a summary of the responses to the study's research questions and the preliminary findings, and presents suggestions for further work in this area.

Chapter 2

College Curricular Review

The goal of this segment of research, College Curricular Review, first presented in Figure 1.4 and illustrated in Figure 2.1, was to evaluate college and university presentations of the Computer Science major, identifying current components of the curricula available on the web. There were two purposes of this key research area. First to use the curricula obtained through this study to develop a composite curriculum; a typical curriculum exemplary of curricula students might encounter when exploring options for majoring in Computer Science. This "Typical Curriculum" was designed to reflect what students will encounter when initially investigating Computer Science and was used to determine the validity of Hypothesis #1, "When presented with a more relevant Computer Science curriculum than a typical curriculum today, students will be encouraged and motivated to enroll in the major."

The second purpose of this research area was to test Hypothesis #2 that, "Colleges and Universities have not changed the way they display Computer Science curriculum over the last ten years. When compared with earlier course catalogs, courses will have been added, but names of standard courses will remain the same."

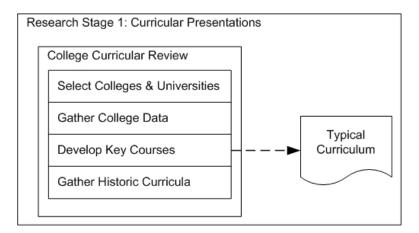


Figure 2.1: Research Stage 1: Curricular Presentations

2.1 College and University Selection

The first step in this segment of research was to choose the colleges and universities from which to gather curricular data. The College Board, a not-for-profit organization "whose mission is to connect students to college success and opportunity [28]," provides web-based tools for students in their search for a college or university to attend. This tool provides options to search through their database of 3862 schools. When searching for schools with a Computer Science major, 919 possible colleges were found. Since this study focused on four-year colleges and universities, the number of institutions was reduced to 665.

2.1.1 Selection Criteria

The College Board's web-based search tool, College MatchMaker [29], provides eight pages of options used to refine the selection of colleges and universities for this study (See Figure 2.2). The pages include:

- Type of School
- Location
- Majors

- Cost & Financial Aid
- Admissions
- Sports & Activities
- Housing & Programs
- Specialized Options

On the "Type of School" tab, shown in Figure 2.2, the options a student may choose include

- Four Year vs. Two Year. Choices include Four-year college, Two-year college, and No preference.
- Public vs. Private. Choices include Public, Private, and No preference.
- Size. Choices include Small (fewer than 2,000 students), Medium (2,000 15,000 students), Large (more than 15,000 students), and No preference.
- Setting. Choices include Urban setting, Suburban setting, Rural setting, and No preference.

The three criteria presented on the "Type of School" tab in which this study was interested include Public versus Private, Size, and Setting.

On the "Location" tab, the student is given the opportunity to choose a combination of regions or specific states (See Figure 2.3). Table 2.1 provides the list of available regions and the states included in each. In this study, regions were used to ensure colleges and universities were selected from across the United States.

On the "Majors" tab, students may select multiple majors of interest. If they do not select a major, all majors are valid. In this study, "Computer Science" was the only major added to the search criteria list.

Q Col	lege Mate	chMak	er				
Type of School	Location	Majors	Cost & Financial Aid	Admissions	Sports & Activities	Housing & Programs	
3862 c Selected of	olleges criteria: No (criteria se	elected				
What's	Importa	ant to	You?				
				⊔ See Re	sults 2	Submit	& Continue
Type of	f <mark>School</mark>						
Most four- earn an a	ssociate's d	es allow egree. I	you to earn a n many cases, isfer to a four-	you can begi			
	ear college						
	ear college						
V No pre	erence						
Both publi Because p they may	be less exp	te colleg jes recei pensive,	es can offer pr ve much of the particularly for ancial assistanc	ir funding fro in-state resid	m state and lents. Howe	l local gove	rnment,
 Public Private No press 	e						
experience	e. It affects	almost	es enrolled at a every aspect, f you receive. Yo	rom the rang	e of majors	available t	
Small	(fewer than	2,000 s	tudents)				
Mediur	m (2,000 - :	15,000 s	tudents)				
	(more than	15,000	students)				
🔽 No pre	eference						
each? Kee	you picture ep in mind t	hat this i	f? Are you dra s the college's choose more t	environment,	and not ne		
🔲 Urban	setting						
	ban setting						
Rural :	setting						
M NO Pre	sierence						
⊔ Save	Search	<u>ک</u> ا	Start Over	뇌 See Re	sults 2	Submit	& Continue

Figure 2.2: The "Type of School" page in College MatchMaker [29]

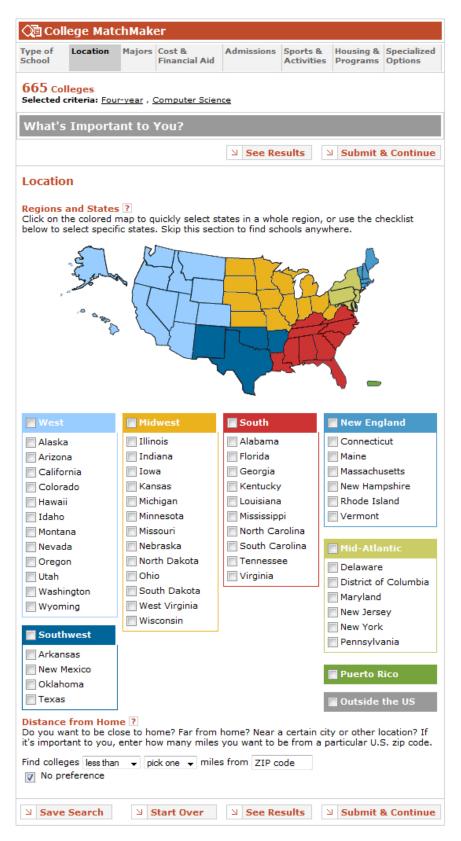


Figure 2.3: The "Location" page in College MatchMaker [29]

The "Cost & Financial Aid" tab allows students to indicate a maximum tuition fee and financial aid opportunity choices. None of these options were selected for this study therefore, colleges and universities were not eliminated from the resultant list due to cost or financial aid criteria.

The "Admissions" tab allows students to select options that search for colleges "that offer academic credit and/or placement out of introductory courses to qualifying students [29]." For this study these options were not used to limit school selection.

The "Sports & Activities" tab allows students to specific selection criteria based on their interests in sports, activities such as Choral Groups, Dance, Film, etc, and whether the school has or does not have Fraternities and Sororities. None of these options were used to limit school selection in this study.

The "Housing & Programs" tab provides selection criteria for students on or off campus housing, housing needs (including women or men only, coed, handicap, etc.) as well as specific academic programs which include Accelerated study, double major, ROTC, etc. None of these options were used to limit school selection in this study.

The "Specialized Options" tab addresses other needs a student may be interested in such as single-sex vs. coed schools, disability services, religious affiliation, and ethnic related schools. None of these options were used to limit school selection in this study.

Four-year institutions that award bachelor degrees in Computer Science were chosen using only five of the criteria provided by the College Board [29]. Table 2.1 shows the five criteria and the options in each that were used to select a broad cross section of colleges and universities.

Criteria	Choice Options used in this study
Public versus Private	Public Private
Setting	Rural Suburban Urban
Size	Small: below 2000 students Medium: between 2000 and 15,000 students Large: over 15,000 students
Region	 West includes the following states: Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, Oregon, Utah, Washington, Wyoming Southwest includes the following states: Arkansas, New Mexico, Oklahoma, Texas Midwest includes the following states: Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, West Virginia, Wisconsin South includes the following states: Alabama, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Virginia New England includes the following states: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont Mid-Atlantic includes the following states: Delaware, District of Columbia, Maryland, New Jersey, New York, Pennsylvania
Type of Curriculum	Liberal Arts Curriculum (LA) Specialized Curriculum (S)

Table 2.1: Selection Criteria used to select the colleges and universities for this study

The only criterion that was not an option on any of the College Board Search tabs was Liberal Arts versus Specialized. This criterion was only found once the schools were selected. When a school was selected, the detail provided by the College Board includes whether the school offers a liberal arts education or not. This

criterion was chosen for this study because of the different perspectives on what belongs in a Computer Science curriculum. Liberal Arts Curricula "generally emphasize multiple perspectives of problem solving (from computer science and other disciplines), theoretical results and their applications, breadth of study, and skills in communication [46]" and are therefore more constrained in the course requirements than a specialized curriculum in a non-liberal arts setting.

2.1.2 Selection Process

Two of the options provided by the web-based tool were selected and remained selected for the entire search: the four-year school option on the "Type of School" tab and the "Computer Science" major on the "Majors" tab. This yielded 665 institutions from which to choose. It was decided that fifty schools would adequately provide information for this segment of the research. Ideally all 665 institutions would be surveyed, however, the institutions that were chosen provided 1534 courses to process which was decided to be an adequate number of courses for this segment of the research.

Of the other five criteria, the first three, Public vs. Private, Setting, and Size, were chosen as the main criteria that distinguish the kind of schools and programs prospective students would expect to see. These three criteria provided a good starting point in selecting a broad distribution of colleges and universities. These criteria generated eighteen possible combinations resulting from matching the different criterion options. Each of these combinations was entered into the web-based tool and schools were randomly selected from the resultant list. Table 2.2 lists the number of schools provided for each combination of criteria chosen. The process of randomly choosing schools simply involved choosing random integers between one and the number of resultant institutions. Figure 2.4 presents

		Public	Private
Urban	Small	2	41
	Medium	41	74
	Large	38	4
Suburban	Small	0	86
	Medium	54	116
	Large	26	1
Rural	Small	11	72
	Medium	40	25
	Large	8	0

a resultant set for small, public schools in an urban setting.

Table 2.2: Number of schools listed for public vs. private, setting and size.

🖓 Colleg	e Mato	hMak	er: Results				
Type of Lo School	cation	Majors	Cost & Financial Aid	Admissions	Sports & Activities	Housing & Programs	Specialized Options
2 Colleges Selected crite	eria: <u>Four</u>	-year , <u>F</u>	Public , Urban s	etting , <u>Small</u>	school , Co	mputer Scie	ince
Your Res	ults						
				Ы	Save Sea	rch 🛛	Start Over
Alphabetical		→ A	scending 👻	Sort		Prin	t Results 💻
Result Pages	: 1			Q	Ð	\$	Q
Nevada Sta Henderson, N		ge					
Am I on Trac	k? How	do I Sta	ick Up?	See Profile A	dd to List	Compare <u>Fi</u>	nd Similar
South Dako Technology Rapid City, S		ol of Mi	nes and				
Am I on Trac	k? How	do I Sta	ick Up?	See Profile A	dd to List 🤇	Compare <u>Fi</u>	nd Similar
			Resul	t Pages: 1			
				Ы	Save Sea	rch 🛛	Start Over

Figure 2.4: A Sample Result Set from College MatchMaker [29]

The number of institutions randomly chosen per resultant set was based on the total number of institutions provided in the set. For results providing less than twenty-five institutions, only one was randomly chosen. For results providing between twenty-five and fifty, two were randomly chosen. For results providing

between fifty and seventy-five, three were randomly chosen. For results providing between seventy-five and one hundred, four were randomly chosen. For results over one hundred, five were randomly chosen. This procedure provided an initial list of thirty-seven schools. Once schools were chosen from all the possible combinations of the three criteria mentioned above, a table was made similar to Tables 2.3 and 2.4 with each school's information for all the criteria listed in Table 2.1.

The table was then consulted to determine if there were schools for each of the other criteria, Region, and Liberal Arts versus Specialized. For those criteria for which there were no schools, the College Board College MatchMaker was once again consulted using values for the criterion which was not represented in the list. This was done to provide a broad distribution of institutions from which to gather Computer Science curricula. At the end of this process, forty-seven schools had been selected which was adequate for this segment of the research.

Table 2.3 lists the private, four-year colleges and universities and Table 2.4 lists the public, four-year colleges and universities chosen for this study after the selection process was complete. The two lists are sorted by setting (rural, suburban, urban) followed by size. Some criteria combinations did not provide school choices. For example there are no private, four-year colleges that are considered large (over 15,000 students) in a rural setting that offer the Computer Science major. There are also no public schools that are in a suburban setting that have less than 2,000 students. The column labeled "Type" in the tables refers to the type of curriculum, whether a Liberal Arts (LA) curriculum or a Specialized (S) curriculum.

School	Setting	Size	Region	Type
Lyon College	Rural	Small (614)	Southwest	LA
Eastern Mennonite University	Rural	Small $(1,073)$	South	LA
Linfield College	Rural	Small $(1,677)$	West	LA
Amherst College	Rural	Small $(1,744)$	Mid-Atlantic	LA
Bethel University	Rural	Medium $(2,550)$	South	LA
Oberlin College	Rural	Medium (2,888)	Midwest	LA
Cedarville University	Rural	Medium $(3,029)$	Midwest	LA
Bucknell University	Rural	Medium $(3,543)$	New England	\mathbf{v}
Cornell University	Rural	Medium (13,931)	New England	∞
Hendrix College	Suburban	Small $(1,456)$	Southwest	LA
William Penn University	Suburban	Small $(1,811)$	Midwest	LA
Stevens Institute of Technology	Suburban	Medium $(2,234)$	New England	\mathbf{v}
Worcester Polytechnic	Suburban	Medium $(3,453)$	Mid-Atlantic	\mathbf{S}
Calvin College	Suburban	Medium (4,015)	Midwest	LA
Princeton University	Suburban	Medium $(5,113)$	New England	\mathbf{S}
Rochester, University of	Suburban	Medium $(5,447)$	New England	\mathbf{S}
Duke University	Suburban	Medium (6,578)	South	S
Brigham Young University	Suburban	Large $(30,745)$	West	S
Christian Brothers University	Urban	Small $(1,425)$	South	S
Kettering University	Urban	Medium $(2,080)$	Midwest	\mathbf{S}
Abilene Christian University	Urban	Medium $(3,916)$	Southwest	S
Johns Hopkins University	Urban	Medium (4,998)	New England	\mathbf{S}
Carnegie Mellon University	Urban	Medium $(6,023)$	New England	S
Southern California, University of	Urban	Large $(16,751)$	West	S

Table 2.3:Private, Four-Year Institutions Chosen

University of sity Institute of TechnologyRural RuralSmall (1,126)s of Mining and TechnologyRuralSmall (1,520)s of Mining and TechnologyRuralSmall (1,522)b of Mining and TechnologyRuralSmall (1,522)University ofRuralSmall (1,522)University ofRuralSmall (1,522)Wise, University ofRuralSmall (1,522)Wise, University ofRuralLarge (18,301)Institute and State UniversityRuralLarge (18,301)Institute and State UniversityRuralLarge (17,849)iversitySuburbanMedium (5,607)iversitySuburbanLarge (17,849)itySuburbanLarge (19,183)of Mines and TechnologyUrbanLarge (23,549)ofUrbanLarge (23,543)voffUrbanLarge (23,343)<	School	Setting	Size	Region	Type
ce of TechnologyRuralSmall (1,244)Midwestand TechnologyRuralSmall (1,500)Mid-AtlanticofRuralSmall (1,500)Mid-Atlanticarsity ofRuralSmall (1,500)New Englandarsity ofRuralRuralSmall (1,652)New Englandarsity ofRuralLarge (18,301)WestRuralLarge (18,301)WestRuralLarge (18,301)WestRuralLarge (18,301)SouthwestSuburbanMedium (7,607)SouthwestSuburbanMedium (7,883)Mid-AtlanticSuburbanLarge (17,849)SouthwestSuburbanLarge (17,849)SouthwestSuburbanLarge (17,849)SouthwestSuburbanLarge (17,849)SouthwestSuburbanLarge (17,849)SouthwestSuburbanLarge (17,849)Mid-AtlanticSuburbanLarge (17,849)Mid-AtlanticUrbanLarge (17,849)MidwestUrbanLarge (17,849)MidwestUrbanLarge (17,849)MidwestUrbanLarge (17,849)MidwestUrbanLarge (17,849)NestUrbanLarge (17,849)NestUrbanLarge (17,849)NestUrbanLarge (17,849)NidwestUrbanLarge (10,133)MidwestUrbanLarge (20,873)NidwestUrbanLarge (20,873)NidwestUrbanLarge (19,183)South <t< th=""><th>Maine at Fort Kent, University of</th><th>Rural</th><th></th><th>Mid-Atlantic</th><th>s</th></t<>	Maine at Fort Kent, University of	Rural		Mid-Atlantic	s
and TechnologyRuralSmall (1,500)Mid-AtlanticofRuralSmall (1,500)Mid-Atlanticsrsity ofRuralSmall (1,652)New Englandsrsity ofRuralMedium (2,015)Southarsity ofRuralLarge (18,301)WestRuralLarge (18,301)WestRuralLarge (18,301)WestRuralLarge (18,301)WestRuralLarge (18,301)WestRuralLarge (18,301)SouthwestSuburbanMedium (7,883)Mid-AtlanticSuburbanLarge (17,849)SouthwestSuburbanLarge (17,849)SouthwestSuburbanLarge (17,849)SouthwestRuralLarge (17,849)SouthwestSuburbanLarge (17,849)SouthwestIty ofSuburbanLarge (17,849)Mid-AtlanticSuburbanLarge (17,849)Mid-AtlanticUrbanNedium (7,971)NestUrbanNedium (7,971)NestUrbanLarge (20,873)MidwestUrbanLarge (21,370)SouthUrbanLarge (21,370)SouthUrbanLarge (23,530)WestUrbanLarge (30,343)MidwestUrbanLarge (30,343)MidwestUrbanLarge (30,343)MidwestUrbanLarge (30,343)MidwestUrbanLarge (30,343)MidwestUrbanLarge (30,343)MidwestUrbanLarge (30,343)M	West Virginia University Institute of Technology	Rural	\sim	Midwest	S
ofRuralSmall (1,520)Mid-AtlanticofRuralSmall (1,652)New Englandsrsity ofRuralMedium (2,015)Southarsity ofRuralLarge (18,301)Westd State UniversityRuralLarge (18,301)WestkuralLarge (33,58)SouthwestSuburbanMedium (7,883)Mid-AtlanticSuburbanMedium (7,883)Mid-AtlanticSuburbanLarge (17,849)SouthwestSuburbanLarge (17,849)Southwestkty ofSuburbanLarge (17,849)Southwestkty ofSuburbanLarge (17,849)Mid-AtlanticSuburbanLarge (19,733)Mid-Atlantickty ofSuburbanLarge (20,873)Mid-Atlantictity ofSuburbanLarge (20,873)Mid-AtlanticUrbanMedium (7,971)New EnglandUrbanMedium (1,913)MidwestUrbanLarge (21,370)SouthwestUrbanLarge (25,530)WestUrbanLarge (23,343)MidwestUrbanLarge (30,343)MidwestUrbanLarge (30,343)MidwestUrbanLarge (30,343)MidwestUrbanLarge (30,343)MidwestUrbanLarge (30,343)MidwestUrbanLarge (30,343)MidwestUrbanLarge (30,343)MidwestUrbanLarge (30,343)MidwestUrbanLarge (30,343)MidwestUrbanLarge		Rural	Ú	Southwest	LA
sity of Rural Small (1,652) New England Iniversity of Rural Medium (2,015) South Rural Large (18,301) West Rural Large (18,301) West Rural Large (18,301) West Rural Large (23,558) Southwest Suburban Medium (5,607) Southwest Suburban Medium (7,883) Mid-Atlantic Suburban Large (17,849) Southwest Suburban Large (17,849) Southwest Suburban Large (17,849) Southwest Suburban Large (17,849) Mid-Atlantic Suburban Large (19,677) West Urban Medium (7,971) New England Urban Medium (7,971) New England Urban Large (19,133) South Midwest Urban Large (19,183) Southwest Urban Large (20,530) West Urban Large (20,333) South Southwest Urban Large (20,333) Nidwest Urban Large (20,333) Nidwest		Rural		Mid-Atlantic	\mathbf{LA}
Iniversity ofRuralMedium (2,015)Southe and State UniversityRuralLarge (18,301)Weste and State UniversityRuralLarge (23,558)SouthwestRuralLarge (38,810)SouthwestSuburbanMedium (7,883)Mid-AtlanticSuburbanLarge (17,849)SouthwestSuburbanLarge (17,849)SouthwestSuburbanLarge (18,067)WestSuburbanLarge (18,067)NidwestSuburbanLarge (18,067)NidwestSuburbanLarge (18,067)NidwestSuburbanLarge (19,183)NidwestSuburbanLarge (20,873)NidwestSuburbanLarge (20,873)NidwestSuburbanLarge (19,183)NidwestSuburbanLarge (19,183)SouthSuburbanLarge (21,370)SouthSuburbanLarge (21,370)SouthSubanLarge (20,694)MidwestSubanLarge (30,044)MidwestSubanLarge (30,044)Midwest<	Pittsburgh Bradford, University of	Rural	\sim	New England	S
e and State UniversityRuralLarge (18,301)Weste and State UniversityRuralLarge (23,558)SouthRuralLarge (38,810)SouthwestSuburbanMedium (5,607)SouthwestSuburbanMedium (7,883)Mid-AtlanticSuburbanLarge (17,849)SouthwestSuburbanLarge (17,849)SouthwestSuburbanLarge (17,849)SouthwestSuburbanLarge (17,849)SouthwestSuburbanLarge (17,849)SouthwestSuburbanLarge (18,067)Westversity ofSuburbanLarge (18,067)SuburbanLarge (18,067)WestSuburbanLarge (18,067)WestSuburbanLarge (18,067)WestSuburbanLarge (18,067)WestUrbanMidum (7,971)New EnglandUrbanMedium (7,971)New EnglandUrbanLarge (19,183)SouthofUrbanLarge (21,370)Southwesty ofUrbanLarge (21,370)SouthwestUrbanLarge (21,370)SouthwestUrbanLarge (21,370)SouthwestUrbanLarge (30,343)MidwestUrbanLarge (30,343)MidwestUrbanLarge (30,343)MidwestUrbanLarge (30,694)MidwestUrbanLarge (30,694)Midwest	Virginia's College at Wise, University of	Rural		South	LA
e and State University Rural Large (23,558) Southwest Rural Large (38,810) Southwest Suburban Medium (5,607) Southwest Suburban Large (17,849) Southwest Suburban Large (17,849) Southwest Suburban Large (17,849) Southwest Suburban Large (17,849) Mid-Atlantic Suburban Large (20,873) Mid-Atlantic Suburban Large (20,873) Mid-Atlantic Suburban Large (20,873) Mid-Atlantic Suburban Large (20,873) Mid-Atlantic Orban Medium (7,971) New England Urban Medium (7,971) New England Urban Large (19,183) South West Urban Large (21,370) Southwest Urban Large (21,370) Southwest Urban Large (21,370) Southwest Urban Large (30,343) Midwest Urban Large (30,343) Midwest	Northern Arizona University	Rural		West	\mathbf{v}
RuralLarge (38,810)SouthwestSuburbanMedium (5,607)SouthwestSuburbanMedium (7,883)Mid-AtlanticSuburbanLarge (17,849)SouthwestSuburbanLarge (17,849)SouthwestSuburbanLarge (18,067)WestSuburbanLarge (18,067)WestSuburbanLarge (20,873)Mid-AtlanticSuburbanLarge (18,067)WestSuburbanLarge (18,067)WestSuburbanLarge (18,067)WestSuburbanLarge (18,067)WestSuburbanLarge (18,067)WestSuburbanLarge (19,067)NidwestSuburbanUrbanMidwestUrbanMedium (7,971)New EnglandOfUrbanLarge (19,183)SouthwestOfUrbanLarge (21,370)SouthwestOfUrbanLarge (21,370)WestUrbanLarge (20,343)MidwestUrbanLarge (30,343)MidwestUrbanLarge (30,343)MidwestUrbanLarge (30,343)MidwestUrbanLarge (30,694)Midwest	Virginia Polytechnic Institute and State University	Rural		South	\mathbf{v}
SuburbanMedium (5,607)SouthwestSuburbanMadium (7,883)Mid-AtlanticSuburbanLarge (17,849)SouthwestSuburbanLarge (17,849)SouthwestSuburbanLarge (17,849)Nid-AtlanticSuburbanLarge (18,067)WestSuburbanLarge (20,873)Mid-AtlanticSuburbanLarge (20,873)Mid-AtlanticSuburbanLarge (20,873)MidwestSuburbanLarge (18,067)WestSuburbanLarge (20,873)MidwestUrbanSuburbanSuplume (1,913)UrbanMedium (7,971)New EnglandUrbanLarge (19,183)SouthwestofUrbanLarge (21,370)y ofUrbanLarge (25,530)UrbanLarge (30,343)MidwestUrbanLarge (30,343)MidwestUrbanLarge (30,343)MidwestUrbanLarge (30,694)Midwest	Texas A & M	Rural		Southwest	\mathbf{v}
SuburbanMedium (7,883)Mid-AtlanticSuburbanLarge (17,849)SouthwestSuburbanLarge (17,849)SouthwestSuburbanLarge (18,067)WestSuburbanLarge (18,067)WestSuburbanLarge (18,067)WestSuburbanLarge (18,067)WestSuburbanLarge (18,067)WestSuburbanLarge (18,067)WestSuburbanLarge (18,067)WestSuburbanLarge (36,489)Mid-AtlanticSuburbanLarge (36,489)MidwestUrbanMedium (7,971)New EnglandUrbanMedium (13,327)WestUrbanLarge (19,183)SouthwestofUrbanLarge (21,370)Southwesty ofUrbanLarge (25,530)WestUrbanLarge (30,343)MidwestUrbanLarge (30,343)MidwestUrbanLarge (30,694)Midwest	Midwestern State University	Suburban		Southwest	LA
SuburbanLarge (17,849)versity ofSuburbanLarge (18,067)SuburbanLarge (18,067)SuburbanLarge (20,873)SuburbanLarge (36,489)SuburbanLarge (36,489)UrbanNedium (7,971)UrbanMedium (7,971)UrbanLarge (19,183)OfUrbanLarge (21,370)y ofUrbanLarge (30,343)UrbanLarge (25,530)UrbanLarge (30,343)	Rhode Island College	Suburban		Mid-Atlantic	LA
 versity of Suburban Large (18,067) versity of Suburban Large (20,873) Suburban Large (20,873) Suburban Large (36,489) Suban Dacy Urban Medium (7,971) Urban Medium (13,327) Urban Large (19,183) Of Urban Large (21,370) y of Urban Large (30,343) Urban Large (30,343) Urban Large (30,694) 	Oklahoma State University	Suburban	\sim	Southwest	\mathbf{v}
versity of Suburban Large (20,873) sand Technology Suburban Large (36,489) es and Technology Urban Small (1,913) Urban Medium (7,971) 1 Urban Medium (7,971) 1 Urban Medium (13,327) 1 of Urban Large (19,183) of Urban Large (21,370) y of Urban Large (25,530) Urban Large (30,343) 1 Urban Large (30,343) 1	Oregon State University	Suburban	\smile	West	\mathbf{v}
sand Technology Suburban Large (36,489)] es and Technology Urban Small (1,913)] Urban Medium (7,971)] Urban Medium (13,327)] Of Urban Large (19,183)] of Urban Large (21,370)] y of Urban Large (21,370)] Urban Large (30,343)]] Urban Large (30,343)]] Urban Large (30,343)]]	Massachusetts Amherst, University of	Suburban	\sim	Mid-Atlantic	\mathbf{v}
es and Technology Urban Small (1,913) Urban Medium (7,971) Urban Medium (13,327) Urban Large (19,183) Of Urban Large (19,183) Vrban Large (21,370) Urban Large (20,343) Urban Large (30,343) Urban Large (30,694)	Michigan State University	Suburban		Midwest	\mathbf{v}
Urban Medium (7,971) 1 Urban Medium (13,327) 1 Urban Large (19,183) 5 Urban Large (21,370) 5 Urban Large (21,370) 5 Urban Large (21,370) 5 Urban Large (23,330) 1 Urban Large (30,343) 1 Urban Large (30,694) 1	South Dakota School of Mines and Technology	Urban		Midwest	S
Urban Medium (13,327) Urban Large (19,183) Urban Large (19,183) Urban Large (21,370) Urban Large (21,370) Urban Large (21,370) Urban Large (21,370) Urban Large (23,530) Urban Large (30,343) Urban Large (30,694)	Pace University	Urban	\sim	New England	S
Urban Large (19,183) Urban Large (21,370) Urban Large (25,530) Urban Large (30,343) Urban Large (30,694)	Nevada, Reno, University of	Urban	\sim	West	S
Urban Large (21,370) Urban Large (25,530) Urban Large (30,343) Urban Large (30,694)	Kentucky, University of	Urban	\sim	South	\mathbf{v}
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Texas Arlington, University of	Urban	\smile	Southwest	\mathbf{v}
$\begin{array}{ccc} Urban & Large (30,343) \\ Urban & Large (30,694) \end{array}$	California Berkely, University of	Urban	\smile	West	\mathbf{v}
Urban Large (30.694)	Wisconsin, University of	Urban	\smile	Midwest	\mathbf{v}
	Illinois, University of	Urban	Large $(30,694)$	Midwest	\mathbf{S}

 Table 2.4:
 Public, Four-Year Institutions Chosen

المنارات المستشارات

2.2 Gathering College Curricula

After the selection process was complete, forty seven colleges and universities were chosen. The next step in this curriculum study was to gather the available curricula from each of the schools via the World Wide Web. The main assumption in gathering the Computer Science curricula on each college website for this study, was that the searcher would not give up when the searching proved difficult.

The main page of each of the chosen college's website was found using the link provided by the College MatchMaker [29] tool. Figure 2.5 presents an example of the detailed information provided by the College Board for an Institution. From the main page of each of the schools' websites the search for the Computer Science curriculum began. Most schools have a link on their main page to an Academics page where majors can be found. Many of the curricula were found using these links. Some schools however structure their websites differently. For school websites which hindered locating the curriculum, the college catalog was located and used. For many of these schools, the college catalog is simply an electronic version of the publication they make available to prospective students.

Once the curriculum was found, the courses and course definitions were copied to a spreadsheet where the data was arranged to be uploaded to a database designed for this study. Figure 2.6 displays the diagram of the database that was used for this segment of the research. The main tables in the database were the College table that stored the information gathered from the College MatchMaker [29] tool and the Course table that contained the course information and a link to the College table. Other tables such as Region, State, PublicPrivate, Setting, and School_Year made searching and organizing the data easier. The Course table, containing the main data in this study, included the following data fields:

Rapid City, South Da College Board code:		f Mine:	s and ⁻	Techno	ology	<u>Back to Result</u>
⊕ ⊜		\odot	۲	(Print Full Profile 💻
Add to List Compar	e Find Similar	Map It	Apply	Reques	t Info	Send to a Friend 🗏
At a Glance	Admission	Cost & Aid	Financial	Acaden Support		▶ Sports
	SAT®, AP®, CLEP®	Majors		Housing Campus		International Students
Main Address 501 East Saint Joseph Street Rapid City, SD 57701 () (605) 394-2511 () www.sdsmt.edu			Admission Office 501 East St. Joseph Street Rapid City, SD 57701 (605) 394-2414 Fax: (605) 394-1979 admissions@sdsmt.edu Contact: Tamara Martinez-Anderson Director of Admissions			
Type of School Public			Calenda	r: Semes	ter	
University						
Four-year			Degrees offered: Associate			
Coed			 Bach 			
Percent applicants a			 Mast 			
Regionally Accredite North Central Assoc Schools		es and	 Doct 	oral		
Urban setting Small city (50,000 - 249,999) Commuter campus			Total undergrads: 1,913 First-time degree-seeking freshmen: 362 Degree-seeking undergrads: 1,632 Graduate enrollment: 264			
Student Body 1st-year students:	51% In-state students 49% Out-of-state students 0% Part-time students					
	20% Women 80% Men					
	4% American Indian/Alaskan Native 2% Asian/Pacific Islander <1% Black/Non-Hispanic 2% Hispanic 83% White/Non-Hispanic 2% Non-Resident Alien 6% Race/ethnicity unreported					
	22% in top 10th of graduating class 55% in top quarter of graduating class 86% in top half of graduating class					
		CDA of 2	75 and hi	-		a T Stack Up2
	35% had h.s. 22% had h.s. 17% had h.s. 13% had h.s. 11% had h.s. 1% had h.s. G 1% had h.s. G	GPA betw GPA betw GPA betw GPA betw PA betwe	veen 3.25 veen 3.0 a veen 2.5 a een 2.0 an	and 3.49 nd 3.24 nd 2.99 d 2.49	How do	o I Stack Up? es my academic nance stack up?

Figure 2.5: An Example of Information Provided by the College Board for an Institution

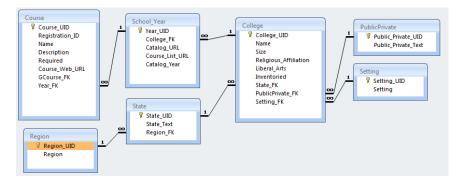


Figure 2.6: The College and Course Database Model

- Year: The year in which this course was found
- Registration_ID: The course number (i.e. CS 105)
- Name: The name of the course
- Description: The course description copied from the website
- Required: An indicator identifying the requirement level of this course.
 - "R" = Required: Required courses are the courses that students taking this major must take.
 - "C" = Choice Option: In some curricula a certain number of courses must be taken from a larger group of courses. These are considered Choice Option courses.
 - "E" = Elective: Elective courses are courses that students do not need to take but may if they so choose.

During the gathering process, many challenges were encountered that may cause students interested in what Computer Science entails to abandon their search. The first challenge was determining which department, school, or college was responsible for the Computer Science major. In searching for the Computer Science major, many college and university websites require the visitor to select the appropriate school or department. In this study's search, the Computer Science major was found in the school of Information Technology and Computing, the school or college of Engineering, the school or college of Arts and Sciences, and the Department of

Computer Science, among others. This makes it very confusing for prospective students.

Once the appropriate school or department was determined, finding the requirements for the Computer Science major also proved challenging. The curriculum on many schools web sites is located many pages deep making the search difficult for prospective students. Getting to the desired page not only requires traversing multiple pages, but also requires guessing at the correct path to get there. If the path is too difficult, the prospective student may simply give up. Some schools provide obvious links to their catalogs which provide much of the necessary information.

A final challenge to students interested in what the major requires is in comparing curriculum of different schools. Each school and university displays curricula differently with different numbering schemes, course titles, and layouts. In order to compare courses and requirements from college to college, a prospective student is required to locate course descriptions and compare the topics covered in one college with courses from another college. Some schools list courses that do not have descriptions which makes understanding the curriculum difficult.

2.3 Determining Key Course Titles

The intent of this study is to mimic a student's initial search for the requirements of the Computer Science major. The desire is to gather information that students would initially see when their first impression of the major is formed. To that end, for each school, the Computer Science program requirements were collected along with all the courses and course descriptions for the major. The course descriptions provided information necessary in equating courses between schools and was not

used to form the initial impression of the major. Although all courses and course descriptions were collected, only the required and choice-option courses were used in this segment of the research. It was decided that the prospective student's initial inspection of the major would focus on the courses that are presented to the student on the major requirements page which generally consists of required and choice-option courses. Each of the chosen schools' Computer Science program is documented in Appendix A.

After the information was collected, each course was compared with the courses from other schools based on course title and description and lists were developed, grouping courses covering the similar material. Courses with the same or similar name were easily grouped together. For those with different names, the course descriptions were consulted to determine if they were similar. Each grouping of courses representing the same course was given a name based on the most descriptive name or the most frequently used terms used within the group. The group is referred to in this study as the Key Course and the name of the group as the Key Course Name.

For example, thirty-two schools had an introduction course with names including, "Introduction to Computer Science", "Introduction to Computing", "Introduction to Computer Science I", and "Introduction to Programming" among others. Seven schools use the phrase "Introduction to Computer Science" as the beginning of the course title. The second most frequently used title was "Introduction to Programming" with eight schools using that phrase in their title. The most common word used in the titles is "Introduction" with eighteen schools using the term. The second most commonly used phrase is "Computer Science" with fifteen schools using that phrase. The next most commonly used term is "Programming" with thirteen schools using that term. Since the majority of schools use the term

"Introduction" and the phrase "Computer Science", "Introduction to Computer Science" was the name given to that Key Course (see Table 2.5).

Course Name	College or University
Computer Science 1	Bethel University
Computer Science Orientation	Oregon State University
Concepts Of Computer Science	Pittsburgh Bradford, University of
Foundations Of Computer Science I	Hendrix College
Fundamentals Of Computer Science	Christian Brothers University
General Computer Science	Princeton University
Intro To Computer Science	Illinois, University of
Introduction To Computer Science	Maine at Fort Kent, University of
Introduction to Computer Science	Abilene Christian University
Introduction To Computer Science	Stevens Institute of Technology
Introduction To Computer Science And	Texas Arlington, University of
Engineering	
Introduction To Computer Science And	New Mexico Institute of Mining and
Information Technology	Technology
Introduction To Computer Science I	Amherst College
Introduction To Computer Science I	Bucknell University
Introduction To Computing	Nevada, Reno, University of
Introduction To Computing	Calvin College
Introduction To Computing	Texas A & M
Principles Of Computer Science I	Oberlin College
Introduction To Programming	Wisconsin, University of
Introduction To Programming	Maine at Fort Kent, University of
Introduction To Programming	Bethel University
Introduction To Programming	New Mexico Institute of Mining and
	Technology
Introduction To Programming I	Michigan State University
Introduction To Programming I	Lyon College
Introduction To Programming In Java	Johns Hopkins University
Introduction To Programming Systems	Princeton University
Principles Of Programming	Carnegie Mellon University
Programming Abstractions	Oberlin College
Programming I	Abilene Christian University
Programming Techniques	William Penn University
The Science Of Programming	Rochester, University of

 Table 2.5: Example of Introduction to Computer Science

Another Key Course given the name "Programming I" had courses from thirty-three

schools (See Table 2.6). There were a wide variety of names for this course. Of the thirty-three schools, twenty-four of them have the term "Programming" in their title. Many of them, fourteen, use the term "Introduction." Since most schools follow this course with a second programming course, the term "Introduction" was dropped and the course titles were compared to the second programming course to determine what name should be given (See Table 2.7). Names of specific programming languages within the titles were also dropped. Since most of the course names included "Programming" and a notation indicating the first or second course, "Programming I" and "Programming II" were selected.

Data Structures, another example, was an easy Key Course to name since all of the twenty-three schools used the phrase "Data Structures" and the majority, fifteen, used the exact phrase as the title (See Table 2.8).

Sixteen schools have a course on "Data Structures and Algorithms" as opposed to simply "Data Structures" (See Table 2.9). Since more schools listed "Data Structures" as a required course versus "Data Structures and Algorithms", "Data Structures" was chosen to be a part of the typical curriculum. To cover the "Algorithms" portion of the curriculum, thirty-one of the schools had a different course for "Algorithms" (See Table 2.10). Many of the schools listing "Data Structures" also used this other course for "Algorithms", so it was added to the curriculum as "Algorithms and Complexity".

One guiding principle in grouping these courses was the need to keep the overall number of Key Courses to a minimum. One main difficulty in equating courses is that in one college a course may cover a broad number of topics that another college covers in two different courses. This study does not intend that the Key Courses listed in Appendix B be used as a determinant of course equality. One of the main purposes of this segment of research is to develop a Typical Curriculum based on the

courses provided through the college search. To that end, the equality suggested in these Key Courses is sufficient in developing a Typical Curriculum that was then used in a survey instrument presented to prospective students (See Chapter 5).

The list of all key course groupings and the specific college courses are presented in Appendix B. Tables 2.11 and 2.12 list all the required and choice-option Key Courses and the number of schools represented by each Key Course.

Course Name	College or University
Beginning Programming: Objects	Linfield College
C Programming	Oklahoma State University
C++ Programming	Lyndon State College
C++ Programming	Cedarville University
Computer Programming I	Pace University
Computer Programming I	Rhode Island College
Computer Science 1	West Virginia University Institute of
1	Technology
Computer Science I	Midwestern State University
Computer Science I	Northern Arizona University
Computer Science I	Nevada, Reno, University of
Computer Science I	South Dakota School of Mines and
	Technology
Concurrent Programming	Stevens Institute of Technology
Foundations Of Computer Program-	Virginia's College at Wise, University of
ming In $C/(No Suggestions)$	
Fundamentals Of Computer Program-	Southern California, University of
ming	
Introduction To Computer Program-	Brigham Young University
ming	
Introduction To Computer Program-	Kentucky, University of
ming	
Introduction To Computer Science	Pittsburgh Bradford, University of
Introduction To Computer Science	Christian Brothers University
Introduction To Computer Science I	Oregon State University
Introduction To Computing Using Java	Cornell University
Introduction To Programming	Wisconsin, University of
Introduction To Programming	Maine at Fort Kent, University of
Introduction To Programming	Bethel University
Introduction To Programming	New Mexico Institute of Mining and
	Technology Milling State II is stit
Introduction To Programming I	Michigan State University
Introduction To Programming I	Lyon College
Introduction To Programming In Java	Johns Hopkins University
Introduction To Programming Systems	Princeton University Comogia Mollon University
Principles Of Programming Programming Abstractions	Carnegie Mellon University
Programming Abstractions Programming I	Oberlin College Abilene Christian University
Programming I Programming Techniques	Abilene Christian University William Penn University
Programming Techniques The Science Of Programming	Rochester, University of

 Table 2.6:
 Example of Programming I

المنارات المستشارات

Course Name	College or University
Advanced Programming Concepts	Brigham Young University
Advanced Programming Techniques	Princeton University
Computer Programming – C++	Maine at Fort Kent, University of
Computer Programming II	Pace University
Computer Programming II	Rhode Island College
Computer Science 2	Bethel University
Computer Science 2	West Virginia University Institute of
	Technology
Computer Science II	Midwestern State University
Computer Science II	Northern Arizona University
Computer Science II	Nevada, Reno, University of
Computer Science II	South Dakota School of Mines and
	Technology
Intermediate Programming	Johns Hopkins University
Intermediate Programming	Texas Arlington, University of
Intermediate Programming: Data Ab-	Linfield College
stractions	
Intermediate Programming: Java	Eastern Mennonite University
Intermediate/Advanced Programming	Carnegie Mellon University
Introduction To Computer Science II	Amherst College
Introduction To Computer Science II	Oregon State University
Introduction To Programming II	Michigan State University
Introduction To Programming II	Lyon College
Java Programming	Lyndon State College
Principles Of Computer Science II	Oberlin College
Programming Ii: Data Structures	Abilene Christian University
Programming In Java	Virginia's College at Wise, University of

 Table 2.7:
 Example of Programming II

Course Name	College or University
Data Structures	Pittsburgh Bradford, University of
Data Structures	Midwestern State University
Data Structures	Illinois, University of
Data Structures	Johns Hopkins University
Data Structures	West Virginia University Institute of
	Technology
Data Structures	Christian Brothers University
Data Structures	Northern Arizona University
Data Structures	Oregon State University
Data Structures	Stevens Institute of Technology
Data Structures	Nevada, Reno, University of
Data Structures	Eastern Mennonite University
Data Structures	California Berkely, University of
Data Structures	Virginia's College at Wise, University of
Data Structures	South Dakota School of Mines and
	Technology
Data Structures	Southern California, University of
Data Structures And Functional Pro-	Cornell University
gramming	
Data Structures And Objects	Bethel University
Data Structures Using Java	Cedarville University
Introduction To Data Structures	Wisconsin, University of
Introduction To Data Structures	Calvin College
Programming With Data Structures	Massachusetts Amherst, University of
Software Design And Data Structures	Virginia Polytechnic Institute and State
	University
The Science Of Data Structures	Rochester, University of

 Table 2.8: Example of Data Structures

Course Name	College or University
Algorithms & Data Structures	Texas Arlington, University of
Algorithms And Data Structures	Michigan State University
Algorithms And Data Structures	Lyndon State College
Algorithms And Data Structures	Princeton University
Algorithms And Data Structures	Bucknell University
Algorithms And Data Structures	New Mexico Institute of Mining and
	Technology
Data Structures & Algorithm Analysis	William Penn University
Data Structures And Algorithm Analy- sis I	Oklahoma State University
Data Structures And Algorithms	Virginia Polytechnic Institute and State University
Data Structures And Algorithms	Brigham Young University
Data Structures And Algorithms	Calvin College
Data Structures And Algorithms	Texas A & M
Data Structures And Algorithms I	Amherst College
Data Structures And Algorithms I	Pace University
Data Structures And Algorithms I	Lyon College
Fundamental Data Structures And Al-	Carnegie Mellon University
gorithms	

 Table 2.9:
 Example of Data Structures And Algorithms

Course Name	College or University
Advanced Topics In Algorithms, Com-	Linfield College
plexity And Intelligent Systems	
Algorithm Design And Analysis	Carnegie Mellon University
Algorithm Design And Analysis	Kentucky, University of
Algorithms	Stevens Institute of Technology
Algorithms	Northern Arizona University
Algorithms	Christian Brothers University
Algorithms	Cedarville University
Algorithms & Programming	William Penn University
Analysis Of Algorithms	West Virginia University Institute of
	Technology
Analysis Of Algorithms	Oregon State University
Analysis Of Algorithms	Eastern Mennonite University
Analysis Of Algorithms	Worcester Polytechnic
Analysis Of Algorithms	Nevada, Reno, University of
Analysis Of Algorithms	South Dakota School of Mines and
	Technology
Analysis Of Algorithms	Rhode Island College
Applied Algorithms	Amherst College
Data And Algorithm Analysis	Virginia Polytechnic Institute and State
	University
Design And Analysis Of Algorithms	Texas A & M
Design And Analysis Of Algorithms	Southern California, University of
Design And Analysis Of Algorithms	New Mexico Institute of Mining and
	Technology
Design And Analysis Of Efficient Algo-	Rochester, University of
rithms	
Efficient Algorithms And Intractable	California Berkely, University of
Problems	Vincinia's College at Wing University of
Introduction To Algorithms	Virginia's College at Wise, University of
Introduction To Algorithms	Oberlin College
Introduction to Analysis of Algorithms	Cornell University
Introduction To Computational Theory	Brigham Young University
Introduction To The Design And Anal-	Duke University
ysis Of Algorithms	Wissensin University of
Introduction To Theory Of Computing	Wisconsin, University of
Logic, Computability And Complexity	Calvin College
Theory Of Computation	Kettering University
Theory Of Computation	Hendrix College

 Table 2.10:
 Example of Algorithms and Complexity

Key Course Title	School Count
Algorithm Analysis	9
Algorithms and Complexity	36
Algorithms II	3
Algorithms III	1
Artificial Intelligence	36
Assembly Language Programming	1
Automata Theory	9
Compiler Design	28
Computational Theory	12
Computer Architecture	29
Computer Architecture II	2
Computer Graphics	38
Computer Models	1
Computer Organization and Assembly Language	18
Computer Science Capstone	18
Computer Science Capstone II	4
Computer Science Capstone III	1
Data Communications and Networking	28
Data Structures	23
Data Structures And Algorithms	16
Data Structures And Algorithms II	3
Data Structures and Algorithms Using OO	1
Database Concepts	29
Discrete Mathematics	16
Finite Structures	1
Great Theoretical Ideas In Computer Science	1
Human Computer Interface	8
Information Structures	2
Internship	14
Introduction to Computer Science	25
Introduction To Engineering	1
Introduction To Programming	6
Logic Design	3
Machine Organization	2
Mathematics Of Computer Science	3
Media Computing	2
Microcomputers	2

 Table 2.11: List of the Required and Choice Option Key Courses (Part I)

Key Course Title	School Count
Microcontroller Architecture Programming	1
Numerical Methods	13
Numerical Methods II	2
Object Oriented Programming	11
Object-Oriented Design	4
Operating Systems	45
Operating Systems II	2
Operations Workshop I	1
Perspectives On Computing	1
Portfolio	2
Problems Solving	2
The Computing Professional	4
Program Design	4
Programming I	38
Programming II	24
Programming Languages	36
Programming Languages II	5
Programming Studio	2
Security	19
Seminar	10
Seminar II	2
Senior Design I	3
Social and Ethical Issues in Computer Science	12
Software Design	2
Software Development	4
Software Engineering	34
Software Engineering II	4
Software Systems	1
Sophomore Seminar	1
Topics in Computer Science	37
Structure of Programs	1
Systems	16
Systems Programming	19
Systems II	2
Technical Communication And Analysis	1
Unix Programming	5
Web Programming	12

 Table 2.12: List of the Required and Choice Option Key Courses (Part II)

2.4 Developing a Typical Curriculum

The next step after Key Courses were established and named was to develop the "Typical Curriculum". Courses in any curriculum fall into one of three categories. The first category are courses that are mandatory; courses that students must take toward fulfillment of their degree. In this dissertation, these courses are labeled required courses and given a requirement indicator of "R".

The second category are the courses that are listed together from which students must choose a certain number of courses. These courses in this dissertation are labeled choice option courses and given a requirement indicator of "C".

The third category of courses are the courses that students may elect to take. These courses in this dissertation are called elective courses and given a requirement indicator of "E". Elective courses were not included in the Typical Curriculum since this study focuses on students' first impressions of the Computer Science major they encounter on the web.

All courses were given a key name that represents the content of the course in order to more easily group like courses from the different colleges and universities (See section 3.2). There were seventy-four Key Courses in the entire list that were required courses denoted by a requirement indicator of "R". A percentage was calculated for each key name that represents the percentage of colleges that require a course in that key name category. The courses were then restricted to those that were required by 25% or more of the colleges and universities.

The sequence of Key Course was important in the selection process. Therefore, a sequencing number was calculated for each Key Course using the course registration ID from the courses within each Key Course. Colleges and universities usually

number courses in a sequence students follow as they progress through their academic career. Therefore, sequencing is an attempt at putting the Key Courses in the order in which a student would normally take them. Many schools use a 3-digit numbering system where the most significant digit represents the level of the course. For example, Introduction to Programming I at the Michigan State University has a course number of 213 whereas Software Engineering has a course number of 435 indicating the students of higher standing would take Software Engineering. Some schools use a 2- and 3-digit numbering system, such as Amherst College which numbered "Introduction to Computer Science" 11 and "Artificial Intelligence" 310. Still others use a 4-digit numbering system, such as Cedarville University which numbered "Operating Systems" 3310 and "Computer Graphics" 4710. The different numbering systems proved sequencing courses accurately challenging. To calculate the sequence of a Key Course, the first two digits of the registration id for each of the courses in the Key Course were averaged. This provided a way of sequencing all Key Courses.

Table 2.13 presents the Key Courses for those courses that students are required to take as ordered by their sequencing number. In the list, Programming I was the Key Course required by the majority of schools. 68% of the colleges and universities surveyed required students to take the course. The next most required course was Operating Systems with 55% of colleges requiring it. In this table, only required courses within the Key Course were included in the sequencing. Due to the differences in requirements and numbering standards, the calculated sequence number for Programming II positioned it before Programming I.

Table 2.14 presents all the Key Course Name categories for courses that students must take either as a required course or as a choice option. These are the courses identified with a requirement indicator of "R" or "C". The highest average key

Key Course Name	Sequence Number	Number of Colleges	Percent of Colleges	Included in Typical Curriculum
Introduction to Computer Sci-	1358	18	38.3%	Yes
ence				
Programming II	1685	21	44.68%	Yes
Programming I	1768	32	68.09%	Yes
Data Structures	2498	23	48.94%	Yes
Computer Organization and As-	2500	16	34.04%	Yes
sembly Language				
Data Structures And Algorithms	2611	16	34.04%	
Discrete Mathematics	2629	14	29.79%	
Systems Programming	2706	14	29.79%	Yes
Computer Architecture	3005	12	25.53%	Yes
Algorithms and Complexity	3308	25	53.19%	Yes
Database Concepts	3322	14	29.79%	Choice
Data Communications and Net-	3403	12	25.53%	Choice
working				
Software Engineering	3473	20	42.55%	Choice
Programming Languages	3638	22	46.81%	Yes
Operating Systems	3646	26	55.32%	Yes
Computer Science Capstone	4471	16	34.04%	Yes

Table 2.13: Key Course Names for Courses that are required

name course is still Programming I which is a required or a choice option by 68% of the colleges and universities surveyed followed by Operating Systems at 55% and Algorithms and Complexity at 53%. Both tables 2.13 and 2.14 presents the Key Courses above 20%.

The purpose of this analysis is to provide information in developing the curriculum that represents any curriculum students may encounter in their search for a college with a Computer Science major. Courses were chosen from the Key Courses to develop the Typical Curriculum. The top courses in the required list were chosen with the exception of Data Structures and Algorithms since two other courses were chosen that covers both those topics. Table 2.15 presents the Typical Curriculum that was used in the student surveys.

Key Course Name	Sequence Number	Number of Colleges	Percent of Colleges	Included in Typical Curriculum
Introduction to Computer Sci-	1358	18	38.3%	Yes
ence				
Programming I	1748	33	70.21%	Yes
Programming II	1841	24	51.06%	Yes
Object Oriented Programming	2122	10	21.28%	
Data Structures	2498	23	48.94%	Yes
Data Structures And Algorithms	2611	16	34.04%	
Computer Organization and As-	2612	18	38.3%	Yes
sembly Language				
Discrete Mathematics	2621	15	31.91%	
Systems Programming	2763	16	34.04%	Yes
Systems	2889	12	25.53%	
Computer Architecture	3311	20	42.55%	Yes
Computational Theory	3428	11	23.4%	
Algorithms and Complexity	3433	31	65.96%	Yes
Software Engineering	3447	24	51.06%	Choice
Database Concepts	3548	25	53.19%	Choice
Artificial Intelligence	3602	12	25.53%	Choice
Programming Languages	3654	30	63.83%	Yes
Operating Systems	3715	32	68.09%	Yes
Data Communications and Net-	3751	22	46.81%	Choice
working				
Numerical Methods	3780	11	23.4%	
Compiler Design	4034	11	23.4%	
Computer Science Capstone	4439	17	36.17%	Yes

Table 2.14: Key Course Names for Courses that are required or choice-options

Computer S	cience
CS 101	Introduction to Computer Science
CS 110	Programming I
CS 120	Programming II
CS 201	Data Structures
CS 210	Algorithms and Complexity
CS 221	Computer Organization and Assembly Language
CS 230	System Programming Concepts
CS 310	Computer Hardware
CS 320	Programming Languages
CS 330	Computer Architecture
CS 410	Operating Systems
CS 494	Computer Science Capstone
Choose 4 of	the following
CS 332	Database Concepts
CS 380	Computer Graphics
CS 411	Software Engineering
CS 415	Data Communications and Networking
CS 420	Artificial Intelligence
CS 440	Compiler Design
Mathematic	s
MATH 110	Calculus I

 Table 2.15:
 The Typical Computer Science Curriculum

Discrete Structure

MATH 112 Calculus II

MATH 120

2.5 Gathering and Analyzing Historic Curricula

The last step in this segment of the research is to evaluate historic curricula available on the World Wide Web. During the curriculum gathering step as described in section 2.2, college web sites were also searched for Computer Science curricula from 2000 and 2005. Of the forty-seven colleges and universities surveyed, thirty-three had 2005 curricula available and nineteen had 2000 curricula available.

Each of the required courses in 2010 for the schools for which historic data was available were compared with courses in 2000 and 2005 by comparing both registration IDs and course names. The number of equivalent courses, by ID and name, were counted and a percentage of equality was calculated per school. These percentages were collected and the minimum, first quartile, median, third quartile and maximum were calculated for each comparison.

2.5.1 Course Comparisons between 2000 and 2010

By Registration ID

There were nineteen schools with curricular data from the year 2000. Table 2.16 displays the averages for each college that has curricular history dating back to 2000. For example, the first percentage, zero represents one college whose course registration IDs in 2010 do not match any registration IDs for courses offered in 2000. Similarly, the last percentage, 90, represents a school in which 90% of the course registration IDs in 2010 match registration IDs for courses offered in 2000.

$0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 22 \ 43 \ 50 \ 56 \ 64 \ 80 \ 80 \ 80 \ 80 \ 80 \ 80 \ 80 \ 8$

 Table 2.16: Raw Averages Each Representing the Percentage

Table 2.17 presents the comparison of courses by ID and name between the years

2010 and 2000. It shows that over a quarter of the schools had no courses in 2010 whose registration IDs were equivalent with courses in 2000. In fact, eight of the nineteen schools with historic data from the year 2000 had no duplicate registration IDs when compared with required courses in 2010. The median school as ordered by percentage of equivalency, had 43% of the registration IDs duplicated between the years 2010 and 2000. The third quartile school shows 81% of the registration IDs equivalent. 90% of the registration IDs in the school with the most similar curricula between 2000 and 2010, were equivalent. Figure 2.7 presents the Box and Whiskers diagram showing the comparison of registration IDs of required courses in 2010 with courses in 2000.

	By ID	By Name
minimum	0%	0%
first quartile	0%	27%
median	43%	63%
third quartile	81%	78%
maximum	90%	88%

 Table 2.17: Statistics Comparing Required Courses in 2010 to Courses in 2000

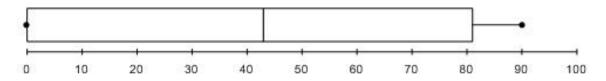


Figure 2.7: Box and Whiskers Presenting Comparison of Registration IDs Between 2000 and 2010 Courses

By Course Name

Table 2.18 displays the averages for each college that has curricular history dating back to 2000. For example, the first percentage, zero represents one college whose course names in 2010 do not match any of the names for courses offered in 2000. Similarly, the last percentage, 88, represents a school in which 88% of the course names in 2010 are identical to names found in courses offered in 2000.

0	0	0	20	27	45	50	55	58	63	64	67	73	75	78	80	80	85	88	
---	---	---	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	--

 Table 2.18: Raw Averages Each Representing the Percentage

Table 2.17 also shows that less than a quarter of the schools had no courses in 2010 that matched by name with courses in 2000. In fact only three schools had no matches when comparing course names from required courses in 2010 with those courses in 2000. Over half of the schools had 63% or more of their course names matching the course names from 2000. The school that duplicated the most had 88% of the course names equivalent to those of 2000. Figure 2.8 presents the Box and Whiskers diagram showing the comparison of course names of required courses in 2010 with courses in 2000.

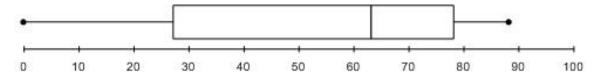


Figure 2.8: Box and Whiskers Presenting Comparison of Registration IDs Between 2000 and 2010 Courses

2.5.2 Course Comparisons between 2005 and 2010

By Registration ID

There were thirty-three schools with curricular data from the year 2005. Table 2.19 displays the averages for each college that has curricular history dating back to 2005. For example, the first percentage, 0 represents one college whose course registration IDs in 2010 do not match any registration IDs for courses offered in 2005. Similarly, the last thirteen percentages, listed as 100s, represent schools in which 100% of the course registration IDs in 2010 match registration IDs for courses offered in 2005.

Table 2.20 presents the comparison of courses by ID and name between the years 2010 and 2005. It shows that half of the thirty-three schools that had historic data

66

0	0	7	9	30	36	44	50	65	67	78	82	83	86	86	89	91
92	93	94	100	100	100	100	100	100	100	100	100	100	100	100	100	

 Table 2.19: Raw Averages Each Representing the Percentage

for the 2005 school year had 91% or more of the registration IDs exactly the same in 2010 as those in 2005. In fact, for thirteen of the thirty-three schools, 100% of the registration IDs were exactly the same. Figure 2.9 presents the Box and Whiskers diagram showing the comparison of registration IDs of required courses in 2010 with courses in 2005.

	By ID	By Name
minimum	0%	0%
first quartile	58%	66%
median	91%	82%
third quartile	100%	96%
maximum	100%	100%

Table 2.20: Statistics Comparing Required Courses in 2010 to Courses in 2005

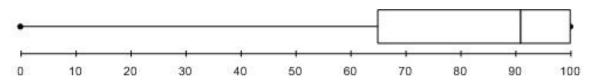


Figure 2.9: Box and Whiskers Presenting Comparison of Registration IDs Between 2005 and 2010 Courses

By Course Name

Table 2.21 displays the averages for each college that has curricular history dating back to 2005. For example, the first percentage, 0 represents one college whose course names in 2010 do not match any of the names for courses offered in 2005. Only one college has renamed every required course in 2010 from those found in the curriculum in 2005. The last eight percentages, listed as 100s, represent schools in which 100% of the course names in 2010 are identical to names found in courses

0	18	20	20	41	50	57	64	67	67	69	71	75	78	82	82	82
83	83	86	89	89	90	91	92	100	100	100	100	100	100	100	100	

 Table 2.21: Raw Averages Each Representing the Percentage

Table 2.20 also shows that three quarters of the schools 66% or more of the course names in 2010 exactly the same as courses in 2005. Eight schools duplicated the names of their entire required courses list in 2010 with courses found in 2005. Figure 2.10 presents the Box and Whiskers diagram showing the comparison of course names of required courses in 2010 with courses in 2005.

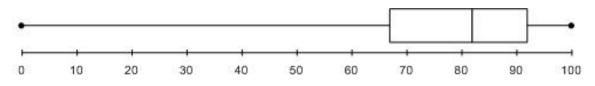


Figure 2.10: Box and Whiskers Presenting Comparison of Registration IDs Between 2005 and 2010 Courses

2.5.3 Conclusions

This data would suggest that the required courses in Computer Science in most colleges and universities have remained the same over the last five years and have changed very little over the last ten years. Table 2.14 shows that over half of the colleges and universities analyzed have kept between 63% and 88% of their course names exactly the same in 2010 as in 2000. Table 2.15 shows that over half these colleges and universities have kept between 91% and 100% of their required courses the same when comparing course identifiers and between 82% and 100% the same when comparing course names in 2010 as in 2005.

2.6 Summary

This segment of the research focused on college curricula that can be found on the World Wide Web. There were forty-seven schools selected using five criteria including public versus private, setting, size, region, and type of curriculum. Curricula was gathered from those forty-seven schools for the 2010 school year. Where possible, curricula was also gathered for the years 2000 and 2005.

During the gathering process several obstacles were observed that may cause interested students to give up their search. The three obstacles presented revolved around the difficulty students might face in looking into the major. The first obstacle was needing to know what school or department in which to find the Computer Science major. The second obstacle was finding the page that presented the curriculum once the school or department was determined. The third obstacle was the challenge in being able to compare curricula from different schools since the presentations differed greatly.

Once the curricula was gathered, courses were compared from different schools and Key Courses were developed. Key Courses are groups of similar courses from different schools that are given a name (For the entire list of Key Courses and their group of specific college courses see Appendix B). These Key Courses were then evaluated and a typical curriculum was developed. The goal in developing the typical curriculum was to put together a curriculum that a student would first encounter when exploring the Computer Science major. Figure 2.11 presents the full Typical Curriculum, including the introduction, that students would expect to encounter in their search.

The last portion of this segment of the research was comparing courses in 2010 with courses presented in 2000 and 2005. In comparing registration IDs from 2010 with

Computer Science Major

Over the last decade, rapid advances in technology, specifically digital technology, have lead to dramatic changes in society and in the global economy. Computer- and technology-related fields claim some of the highest projected job growth in the United States, with software engineering, data communications, networking, and systems analysis and administration among the most top-rated careers.

Students are prepared for lifelong learning in this rapidly evolving discipline. Typically, graduates take entry-level positions in hardware and software systems application and design or continue their education at the graduate level.

Students seeking a Bachelor of Science degree in Computer Science will find a lot of flexibility in tailoring their college education. This program requires 48 credits of computer science courses, 12 credits of mathematics, and 8 credits of physics.

Required Courses

Computer Science

CS 101	Introduction to Computer Science	3
CS 110	Programming I	3
CS 120	Programming II	3
CS 201	Data Structures	3
CS 210	Algorithms and Complexity	3
CS 221	Computer Organization and Assembly Language	3
CS 230	System Programming Concepts	3
CS 310	Computer Hardware	3
CS 320	Programming Languages	3
CS 330	Computer Architecture	3
CS 410	Operating Systems	3
CS 494	Computer Science Capstone	3
Choose 4 o	f the following	
CS 332	Database Concepts	3
CS 380	Computer Graphics	3
CS 411	Software Engineering	3
CS 415	Data Communications and Networking	3
CS 420	Artificial Intelligence	3
CS 440	Compiler Design	3
Mathematic	s	
MATH 110	Calculus I	4
MATH 112	Calculus II	4
MATH 120	Discrete Structures	4

Figure 2.11: The Typical Curriculum

those in 2000, it appears that more of the required course registration IDs in 2010 changed from those in 2000. The median percent of similarity was 43%. In comparing registration IDs from 2010 with those in 2005, however, more registration IDs stayed the same for a greater number of colleges and universities. The median percent of equality was 63%.

In comparing names of courses in 2010 with those in 2000 and 2005, more names stayed the same than the registration IDs. The median percent of similarity of course names between 2010 and 2000 was 57.5%, much higher than the median percent of similarity in registration IDs for the same years. The median percent of similarity of course names between 2010 and 2005 was 65.5%, also higher than the registration IDs of the same years.

This data would suggest that the required courses in Computer Science in most colleges and universities have remained the same over the last five years and have changed very little over the last ten years. Table 2.17 shows that over half of the colleges and universities analyzed have kept between 63% and 88% of their course names exactly the same in 2010 as in 2000. Table 2.20 shows that over half these colleges and universities have kept between 91% and 100% of their required courses the same with between 82% and 100% of them keeping the same name over the last 5 years.

Chapter 3

Technology Job Review

Chapter one introduced this research by identifying the issue of decreasing enrollment in Computer Science. It presented the rise and fall of enrollment over the last several decades as well as the hope presented by the Bureau of Labor Statistics for computing-related job prospects over the next decade. Colleges and Universities have made an effort to address the issue of declining enrollment through updating course content and methodology as well as researching factors that may indicate student future success in the major. The history of curricular guidelines was also presented. With all the work put into addressing the declining enrollment, none have focused on the presentation of curricula to prospective students and asked the question, "Is the curriculum presented to prospective students understandable and attractive to these students?" If the curriculum is not understandable to these prospective students, what actions can be taken to better communicate what computing is all about?

Chapter two explored the current state of the Computer Science curriculum as presented on the World Wide Web. Curricula was obtained and evaluated from forty-seven colleges and universities from a variety of settings and sizes. The intent was to explore curricula from the perspective of students who are initially investigating Computer Science. The outcome of that segment of research was a Typical Computer Science curriculum that was used in surveys to prospective

students.

The next stage of this research, Technology Job Review, as first presented in Figure 1.4 and illustrated in Figure 3.1 was designed to evaluate how businesses promote computer related job opportunities. The goal of this segment was to develop a job-related curriculum by identifying job categories and keywords used in computer-related job openings that would help explain the Computer Science major and the courses of study. The idea behind this segment is to determine if the methods used in job advertisements in presenting computer-related jobs would have an impact on the perceptions of high school students and their parents if utilized in presenting the Computer Science curriculum. If a curriculum were developed around the way industry promotes computer related jobs, maybe students would be attracted and motivated to pursue that course of study.

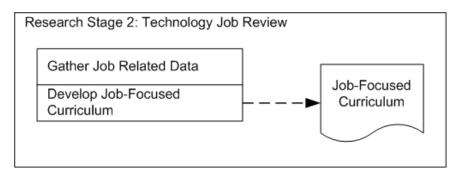


Figure 3.1: Research Stage 2: Technology Job Review

The outcome of this segment was the developed presentation of a Job-Focused Computer Science Curriculum that incorporates keywords found in technology job advertisements and attempts to deviate from the Typical Computer Science curriculum found online. This Job-Focused Curriculum was used in surveys along with the Typical Computer Science Curriculum as designed in Chapter 2 to seek the opinions and perceptions of high school students to the presentation of these curricula. The surveys are explained in further detail in Chapter 5.

This chapter describes the method of gathering the job related data, presents the found data, and describes the method of designing the Job-Focused Curriculum.

3.1 Gathering Technology Job Data

There are many possible avenues to search for computer-related jobs from newspaper advertisements and head hunters to online job search engines. The intent of this study was to gather job advertisements in a manner similar to what current prospective students would search for them. Since the generation of prospective students' primary source of news and information is the Internet [37], it was decided to gather advertisements using online job search engines. To find possible job search engines, once again the Internet was consulted using Google, a popular search engine of Generation Y [30, 81, 95]. Six job search web sites were selected from Google's response to the search "Job Search Engines" (See Table 3.1). These job search engines are described further in Appendix C. Over 200 job advertisements were obtained over a two-week period in 2009 using the job search engines.

Search Engine	URL
Yahoo Hot Jobs	http://hotjobs.yahoo.com/
Career Builder	http://www.careerbuilder.com/
Monster	http://jobsearch.monster.com/
Simply Hired	http://www.simplyhired.com/
Snag a Job	http://www.snagajob.com/
Dice	http://www.dice.com/

 Table 3.1: Job Search Engines Consulted

The job postings were randomly selected from each of the search engines from the technology-related categories. Nine computer-related categories were identified in the job search engines: Information Technology, Web, Database, Networking, Software Engineering, Software Quality and Testing, Security, and Application.

The following are examples of postings collected and categorized from the different search engines.

Information Technology

Account Executive

Maryville Technologies, a systems integration services firm, is seeking an Account Executive in multiple geographies including; Milwaukee, Minneapolis, Kansas City, Houston, and St. Louis. Maryville works on some of the most challenging and complex problems faced by our clients today. This position will allow you to see a variety of environments and get involved with the latest technology. The AE is responsible for business development within a specified region and/or set of accounts. This person will identify and qualify opportunities within the full range of Maryville offerings.

Job posted at Monster

Senior Unix Systems Administrator

Senior Unix (Sun Solaris and LINUX) system administrator also experienced with Windows systems (Active directory). Dealing with cross platform networks consisting of Unix, Linux and Windows 2000 is a must. Clearcase installation and set up on cross platform networks (LINUX and Unix) experience is highly desired. Tasks include hardware/software installation, performing backups, system configuration, and network administration in program development labs, which consist of Unix and Windows systems. Plan for and maintain development networks, storage, COTS upgrades, virus definitions and

collaboration tools; create and maintain user accounts. Be responsible for network security, system recovery and system troubleshooting. Job posted at Dice

Web

Web Analyst

You will work with the Lutron.com team to develop and deploy our new website making back end changes to the website to support new business. You will interact with all strategic business units and various departments in the corporation to develop plans for the new site. 75% of this position will be technical development.

Job posted at Career Builder

Sr. GUI Developer

Seeking a Sr. Web Developer to help develop, maintain, and support a complex retail eCommerce site. Utilize your proficiencies with HTML, CSS, Java Script, Java Script Frameworks (i.e. Prototype, JQuery), AJAX, and JSP to support our websites. PLEASE no Java Server side experts. This is a Front end development initiative.

Job posted at Dice

Database

SQL Database Analyst

An SQL Database Analyst is needed for a secure long-term contract. This Analyst should be able to write database SQL queries/sub queries

against Access or other databases. As well as, manipulating and update database data using VBA scripts; writing Reports in Access and creating handles from Excel to a data source for repeatable reporting. Position requires proficiency in Word templates and ability to update templates using VBA scripts. Also, must analyze data based on query results, with a proficiency in Excel (macros, Complex-vlookup, Pivot charts, etc) is a must.

Job posted at Simply Hire

QL Server DBA - Database Administrator

Senior Database Administrator to support a growing IT infrastructure. The DBA will design, engineer, implement and support technical databases for externally facing web-based and back-office applications. The DBA will work with application developers, systems administrators, software testers and business analysts.

Job posted at Yahoo Hot Jobs

Networking

Network Support

Our experience and expertise ranges from large network support projects that include the configuration, management, and documentation for nationwide internet protocol (IP) infrastructures to the support for individual local area networks. Our network support services cover these areas: WAN design, Firewalls and VPNs, Routers, Installation and configuration, Network documentation, Troubleshooting, Network security, LAN support.

Network Manager

Global Telecommunications company has an immediate opening for a Network Manager. RESPONSIBILITIES: Provides essential Capacity Management support for all Layer 3 services. Including MIS, AVPN, PNT, VoIP, Network Management Devices, Core Routers, Route Reflectors, Juniper, Fiber Drawers, and WiFi.

Job posted at Snag a Job

Software Engineering

Software Developer

Strategic Analysis is seeking a mid-level individual to be an integral part of a team building web-database applications with scientific models. You will perform software development and integration duties in support of complex modeling and simulation programs. As an Intermediate-level Software Engineer, you will contribute to all phases of the software development life cycle, including requirements, design, development, and testing.

Job posted at Career Builder

Software Engineers (Java, J2EE, Secret Clearance)

Next Century Corporation, a growing technology company in Alexandria, Virginia, is seeking software developers/engineers to join our team but not just any software developers. Were searching for those

rare individuals who share our passion for using their skills to make a difference in this world with an unwavering commitment to excellence, integrity and customer satisfaction.

Job posted at Monster

Software Quality and Testing

QA Analyst with RUP

An intermediate Quality Assurance (QA) Analyst (5+ year's experience) is needed for testing application development in a Visual C++ (VC++), Visual C#/.NET, and Oracle PL/SQL environment. Business domain is asset management in the transportation industry. Supply chain, Logistics and Finance experience is also applicable. Experience with a structured iterative development methodology (i.e., Rational Unified Process (RUP)) is absolutely required.

Job posted at Dice

Performance Tester

PERFORMANCE TESTER is assigned to ensure the performance and readiness of the product developed by the Programming Software Engineer. The Performance Tester is responsible for performance & automation testing implementation by performance testing tools, leading processes E2E from the planning, design, development into execution, work very close with the customer. The performance testing process is ongoing communication with other teams related to the task.

Job posted at Dice

Security

Digital Forensics Investigator

Digital Forensic Investigators examine and analyze electronic media in support of computer intrusion, counterterrorism, counterintelligence, and criminal cases supporting both Federal law enforcement and intelligence agencies. After analyzing such media using a broad range of computer forensic tools, Digital Forensic Investigators summarize their findings in a technical report that must be useful to other technical specialists but also understandable by laypersons. On rare occasions, Digital Forensic Investigators may be required to testify in a court of law as a fact witness to the specifics of a case or as an expert witness to the computer forensic analysis process.

Job posted at Simply Hired

Information Security Engineer

Applies current Information Assurance technologies to the architecture, design, development, evaluation and integration of systems and networks to maintain system security.

Job posted at Career Builder

Application

Data Analyst

Act as data analyst for large-scale initiative, running MS Access and MS Excel based reports. Must have a strong attention to detail, and the

ability to work with large amounts of data (50K 100K lines), which should include filtering, sorting, lookups, conditional analysis. Strong working knowledge of MS Access, MS Excel required. Biz Objects would be a plus. Must quickly learn and run a complex set of MS Access queries and MS Excel macros to generate several dozen reports. Act as data analyst for large-scale initiative, running MS Access and MS Excel based reports. Act as data analyst for large-scale initiative, running MS Access and MS Excel based reports.

Job posted at Snag a Job

Desktop Support Technician

We are looking for a Desktop Support Technician for a 6 month contract position with our client in the Miami, Florida area. Provide hardware and software first level support. Ensure problem tickets and Move Adds Changes (MACs) are completed within service levels. Installing, configuring and troubleshooting hardware & software.

Job posted at Yahoo Hot Jobs

The collected job postings were reduced to job title and job description and stored in a tab-delimited document along with the job category.

3.2 Processing the Gathered Technology Job Data

The purpose of processing the gathered job advertisements was to gather technology-related keywords that would be used in describing courses of study for a Job-Related curriculum. To that end a java application was written to read the

tab-delimited document and produce a keyword list for the categories described in Section 3.1.

The job description was then reduced to technology-related words. The technology-related words were processed through a Java program written to consolidate the list, identifying keywords and how many times the words were used. The categories identified on the job search engine websites were used and the keywords discovered in the job postings were included with those categories. For example, "Adobe" was found in many advertisements yet was only related to web-based jobs. "Analysis" on the other hand was used in web, database, information technology, and software engineering jobs, so was categorized in each.

The Java program read the tab-delimited job description file and built a list of jobs to process. The program read a second file, tagged keywords, that contained the currently identified list of keywords and the category in which the word was found. A data structure was developed to contain the keyword and all the categories with which it belongs. The program would then run through the list of jobs and compare all the words in the description with the keyword list. If the word was found in the keyword list, it was added to another data structure that contained the keyword, a count of the number of times the word was found, and a list of job titles in which the keyword was found. Words that were not found in the keyword list were written to a file, "non-tagged.txt", that contained the word and the job title and category in which the word was found. This list was then manually reviewed and new keywords were added to the keyword list for the next round. Common words such as "and", "or", and "the" were the only words left in the "non-tagged.txt" file when the process was completed. The Java program that processed the gathered jobs provided a list of keywords and their category.

3.3 Technology Job Data

The purpose of this technology job study is to identify job categories and keywords used in computer-related job openings to be used in explaining courses of study in the Computer Science major. Keyword lists for each category were developed from the list provided by the Java program described in Section 3.2. The following are the results of the developed lists with only those keywords with a minimum use count of five.

3.3.1 Information Technology

Information Technology keywords were found mainly in such jobs as "Business Analyst with Sharepoint Experience", "Change Manager", "Data Analyst", "Microstrategy, Datastage Consultant", and "SR Desktop Support". Table 3.2 contains the top ten keywords used in Information Technology related job advertisements.

Keyword	Number of Times Used
Unix	35
Linux	32
Scripting	24
Windows	23
Systems	17
IT	15
Operating systems	15
System	15
Troubleshooting	15
Performance	12

Table 3.2: Keywords in Information Technology-related Jobs

Web-related keywords were found mainly in jobs such as "Drupal Web Developer", "Flash Developer", "Front End Web Developer", "HTML, Web Developer", and "Java Web Engineer". Table 3.3 contains the top ten keywords used in Web related job advertisements.

Keyword	Number of Times Used
HTML	28
Ajax	18
JSP	16
Perl	16
PHP	16
J2EE	14
Analysis	10
ASP	10
Flash	10
Web Services	10

Table 3.3: Keywords in Web-related Jobs

3.3.3 Database

Database-related keywords were found mainly in jobs such as "Oracle Forms Developer", "Smallworld GIS Application Support", "SQL Database Analyst", and "SQLServer Database Administrator". Table 3.4 contains the top ten keywords used in Database related job advertisements.

Keyword	Number of Times Used
SQL	42
Oracle	26
XML	24
MySQL	14
Database	12
Access	10
Design	10

Table 3.4: Keywords in Database-related Jobs

3.3.4 Networking

Networking-related keywords were found mainly in jobs such as "Design Engineer", "Internet Product Engineer", "Network Admin", "Network Analyst", and "Network Research Engineer". Table 3.5 contains the top ten keywords used in Networking related job advertisements.

Keyword	Number of Times Used
Network	15
Networking	11
VOIP	11
TCP/IP	10
Telecommunications	9
VPN	8
WAN	8
Firewall	7
LAN	7
HTTP	6

Table 3.5: Keywords in Networking-related Jobs

3.3.5 Software Engineering

Software Engineering-related keywords were found mainly in jobs such as "Application Engineer", "Product Manager", "Program Analyst", "Software Design Engineer", and "System Architect". Table 3.6 contains the top ten keywords used in Software Engineering related job advertisements.

3.3.6 Software Quality and Testing

Software Quality and Testing-related keywords were found mainly in jobs such as "QA Analyst with RUP", "QA Engineer", and "Requirements Coordinator". Table 3.7 contains the top keywords used in Software Quality and Testing related job advertisements.

Keyword	Number of Times Used
Java	39
Javascript	29
Development	27
CSS	23
Software	22
.Net	18
Application	15
Communication	14
С#	13
Cisco	13

Table 3.6: Keywords in Software Engineering-related Jobs

Keyword	Number of Times Used
Testing	12
Test	12
QA	5
Quality	4
Quality Assurance	3

Table 3.7: Keywords in Software Quality and Testing-related Jobs

3.3.7 Security

Security-related keywords were found mainly in jobs such as "Systems Security Engineer", "Product / Application Security Architect", "Security Architect", "Application Security Engineer", and "C & A Security Analyst". Table 3.8 contains the top keywords used in Security related job advertisements.

Keyword	Number of Times Used
Security	15
Risk Management	4
TS/SCI	3
Hacking	3

 Table 3.8:
 Keywords in Security-related Jobs

3.3.8 Application

Application-related keywords were found mainly in jobs such as "Data Analyst" and "Desktop Support Technician". Table 3.9 contains the top keywords used in Application related job advertisements.

Keyword	Number of Times Used
Excel	7
Visio	6
VB	5
Microsoft	5
Basic	5
VB.Net	3
Visual Basic	3

 Table 3.9:
 Keywords in Application-related Jobs

3.4 Job-Focused Curriculum Design

The Job-Focused curriculum, divided into an Introduction section and an Areas of Study section, was designed using the requirements of the Typical Curriculum and information gathered from the Technology Job Review. The Introduction section to the Job-Focused Computer Science Curriculum was divided into two parts. The first, an introductory paragraph, introduces Computer Science as a broad major encompassing a wide range of topics and introduces the second part, the list of concentrations. Since job search engines provide categories of jobs, the introduction to the Job-Focused Curriculum provides categories of concentrations for the Computer Science major. Figure 3.2 presents the introduction that was used in the survey.

The concentrations used were derived from the categories in the job search engines. The concentrations listed include Web Development, Game Development, Networking, Security, Database, Software Engineering, Application Development,

Computer Science Major		
	encompassing a wide range of topics choose from along with the types of	
Concentrations		
Web Development		
 Web Designer/Developer 	Webmaster	 Interactive Developer
Game Development		
Game Developer	 Animation Developer 	 Sound Designer
Networking		
 Network Analyst/Engineer 	 Network Manager 	 Network Design Authority
Security		
Application Security Engineer	 Digital Forensics Specialist 	 Network/Information Security
Database		Manager
 Database Engineer 	 Database/Data Administrator 	SQL Developer/Support Engineer
Software Engineering, Applicati	on Development	
 Software Developer/Architect 	 Project Manager 	Quality Assurance Engineer
Technology Infrastructure		
 Linux Server Administrator 	 Data Storage Engineer 	 Business Consultant
Theory and Analysis		
Graduate School	 Computer Research 	 Mobile Technology Research

Figure 3.2: Job-Focused Curriculum Introduction

Technology Infrastructure, Theory and Analysis, Information Systems, and Mobile Application Development / New Technology.

Included with each concentration in the list were three job titles appraising students of the job opportunities after graduation. The only non-job related concentration relates to students who may proceed to graduate school and/or research and was titled, "Theory and Analysis". The job titles list for that "concentration" focused more on graduate school and research.

The next section of the Job-Focused Curriculum is similar to the Typical Curriculum in that it identifies what students will study; however, instead of specific course names, general areas of study were provided. When job advertisements were collected, the position requirements for each job were never numbered or labeled with a categorization like courses are numbered and categorized. Therefore, it was

decided that specific courses would not be listed, but the topics or areas of study would be.

The Areas of Study section began with an introduction explaining that the following areas are not courses, but topics that students will encounter. It goes on to explain that there are core areas of study for all Computer Science majors and specific areas of study for each concentration. The list of areas of study was developed using a combination of technology terms from the Technology Job Review, the Typical Curriculum courses, and the Computing Curricula 2005 - The Overview Report by Russell Shackelford et. al [98]. The courses that were used from the Typical Curriculum were renamed with more explanatory titles. In several cases, multiple areas of study were added for a single Typical Curriculum course. The additional areas of study were added to provide a clearer picture of what a Computer Science student studies and were based on description of the course in the Typical Curriculum. Figure 3.3 presents the Areas of Study section that students were presented during the survey.

For each concentration the list of study areas was developed using the College Curricular Review and majors that were found which focused on that concentration. The job descriptions from the Technology Job Review were also used to ensure that each concentration would prepare students for jobs in their concentration. The area names were developed using the keywords from the Technology Job Review. Only six concentrations were expanded upon in this second section for two reasons. The first reason relates to the surveys discussed in Chapter 5. The curriculum presented in Figures 3.2 and 3.3 would be displayed to prospective students and therefore there was concern that the length of the page that students would have to view would discourage them.

The second reason relates to the two concentrations not included. There was not

Areas of Study

The following list identifies the areas of study that all Computer Science majors will engage in regardless of their concentration. These are not courses but are topics included in the courses you will be taking. Following this list of areas are the areas of study found in the different concentration areas.

- Artificial Intelligence and Robots
 Data Management
- Building Servers
- Choosing appropriate Languages
 Introduction to Networking
- Using Computers in Other Fields
 Machine Level Architecture
- Computer Graphics 3D Focus
- Computer Science and Society
- Project Management

Concentration Specific Areas of Study

Web Development

- Digital Imaging, Streaming Media
 Hacking
- Flash, Video
- Website Design
- Dynamic Web
- E-Commerce
- Content Management
- Usability
- Web Production and Analysis
- Servers and Databases
- Security

Software Engineering / Application Development

- Different Methodologies Building large software Applications
- Application Build
- Mobile Applications
- Cloud Computing

- Human & Computer Interaction

- Methods for Building Software
- Methods for Organizing Data

Security

Web Graphics

Programming

Technology Infrastructure

Gaming , Web-Based

Information Systems Managers

Step-By-Step Problem Solving

Windows, Linux, Mac OS, etc.

Object Oriented, Event Driven,

- Evaluating Information Systems
- Designing Information Systems
- Opportunities in Business
- Enterprise Resource Planning
- Logistics

Networking

- Network Basics
- Routing Administration
- Client-Server Programming
- Multi-User Computing
- Business Networking
- Network Security

Figure 3.3: Job-Focused Curriculum Required Course List

- Security
- Computer Security
- Cryptography
- Network Security
- Biometrics

Database

- Database Management Systems Oracle, MySQL, SQLServer
- Data mining Managing huge amounts of data
- Data warehousing/storage

enough information in the Typical Curriculum to expand upon the Game Development concentration, so it was left out of the second section. The Theory and Analysis concentration focused more on graduate school and less on future jobs, therefore it was also left out of the second section.

3.5 Technology Job Summary

This segment of research focused on the presentation of technology job advertisements and how that could be used in presenting the Computer Science curriculum differently. Six job search engines were used to gather over 200 job advertisements. These advertisements were used to develop a list of keywords and the categories in which those keywords were found. The categories and keywords were used in developing a Job-Focused Curriculum, shown in Figure 3.4, which was used in a survey to solicit prospective students' opinions.

Interactive Developer

Game Development		
Game Developer	 Animation Developer 	 Sound Designer
Networking		
Network Analyst/Engineer	 Network Manager 	 Network Design Authority
Security		
Application Security Engineer	Digital Forensics Specialist	 Network/Information Security
Database		Manager
Database Engineer	 Database/Data Administrator 	 SQL Developer/Support Engine
Software Engineering, Applicati	on Development	
Software Developer/Architect	Project Manager	 Quality Assurance Engineer
Technology Infrastructure		
Linux Server Administrator	Data Storage Engineer	 Business Consultant
Theory and Analysis	jj	
Graduate School	Computer Research	 Mobile Technology Research
	- sompose resources	- route rearrangy resourch
Areas of Study		
concentration. These are not courses	of study that all Computer Science majo s but are topics included in the courses nd in the different concentration areas.	you will be taking. Following this
 Artificial Intelligence and Robot 	 Data Management 	Security
 Building Servers 	 Human & Computer Interaction 	 Step-By-Step Problem Solving
	 Introduction to Networking 	 Web Graphics
 Using Computers in Other Field 		 Windows, Linux, Mac OS, etc.
Computer Graphics – 3D Focus	-	Programming Object Originated Event Driven
 Computer Science and Society Project Management 	 Methods for Organizing Data 	Object Oriented, Event Driven, Gaming , Web-Based
Concentration Specific Areas	s of Study	
Web Development	Security	Technology Infrastructure
Digital Imaging, Streaming Media	Hacking	Information Systems Managers
• Flash, Video	 Computer Security 	Evaluating Information Systems
Website Design	 Cryptography 	 Designing Information Systems
Dynamic Web	 Network Security 	 Opportunities in Business
E-Commerce	 Biometrics 	 Enterprise Resource Planning
 Content Management 	Database	 Logistics
Usability	 Database Management Systems 	Networking
 Web Production and Analysis Servers and Databases 	Oracle, MySQL, SQLServer	 Network Basics
Security	Data mining	 Routing Administration
Software Engineering /	Managing huge amounts of data	Client-Server Programming
Application Develpment	 Data warehousing/storage 	Multi-User Computing
Different Methodologies		 Business Networking Network Security
Building large software Application	ns	· NEWOR Secondy
 Application Build 		
- Mohile Annitestions		
Mobile Applications Cloud Computing		

Computer Science Major

Web Designer/Developer

Concentrations Web Development

Computer Science is a broad major encompassing a wide range of topics and concentrations. The following is a list of concentrations you may choose from along with the types of jobs they cater to.

Webmaster

Chapter 4

Student Opinions and Ideas for Developing a Student-Focused Curriculum

Chapter 3 presented the Technology Job Review stage of this research. The purpose of the Technology Job Review stage was to evaluated how businesses promote computer related job opportunities with the goal of developing an alternative curriculum to the Typical Curriculum that was developed in Chapter 2. The next stage of this research, Student Opinions and Ideas for Developing a Student-Focused Curriculum, as first presented in Figure 1.4 and depicted in Figure 4.1 was divided into four segments. The first segment, High School Student Technology Survey, was designed to gather student opinions relative to different aspects of technology.

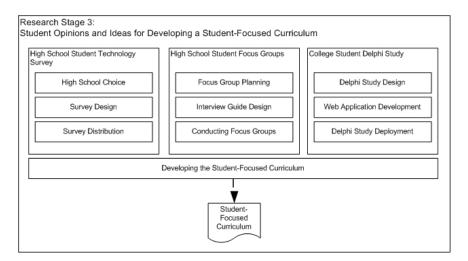


Figure 4.1: Research Stage 3: Student Opinions and Ideas for Developing a Student-Focused Curriculum

The second segment in this stage of research, High School Student Focus Groups, was designed to understand high school student impressions of computing, delving into the students' attitudes and perceptions of computers and the study of computers in college.

The third segment in this stage of research, College Student Delphi Study, seeks specific advice from college students currently enrolled in a computing major related to the presentation of the major.

The goal of each of these segments is the design of a Student-Focused curriculum that takes into account the perceptions of prospective students. This Student-Focused Curriculum was used in surveys along with the Typical Computer Science Curriculum as designed in chapter 2 to solicit the opinions of high school students toward the curriculum presented to them. These surveys are explained in further detail in Chapter 5.

4.1 High School Student Technology Survey Methodology

The framework for the methodology of this stage of the study is illustrated in Figure 4.1. The bulk of this research focuses on a study of high school students, their impressions of computing and the attitudes and perceptions of studying computers in college. This section explains the methodology used to develop the student technology survey and the collection process.

The purpose of this technology survey is two-fold:

- to gather student opinions relative to different aspects of technology in the following categories:
 - Course interests in High School

- Use of technology
- College Intent and Focus
- Technology-related terms
- 2. to recruit students to the next study, the High School Student Focus Groups.

The two outcomes of this section of the research will be students recruited for the High School Focus Groups and data that will provide insight into building a Student-Focused Curriculum. This Student-Focused Curriculum will be used in the second survey instrument detailed in section 3.4. The students that participate in this study and the ones that follow attend Mechanicsburg Area High School which was chosen because of the affinity of the researcher with the high school.

4.1.1 Mechanicsburg Area High School

The Mechanicsburg Area School District, located in Mechanicsburg, Pennsylvania, enrolls over 3,700 students in kindergarten through 12th grade [3]. In the 2006-2007 school year in Pennsylvania, the average enrollment for the 500 public school districts was 3,642 students per school (1,821,383 total students) with the median school enrolling between 2,000 and 2,999 students [1]. Mechanicsburg is 2% larger than the average school and falls between the median and the upper third quartile [1].

The school spends, on average, \$10,651 per student which "ranks in the top 25 percent of school districts in the state" of Pennsylvania [7]. "Approximately 90% of [Mechanicsburg] graduates select post-graduate education, 7% seek employment and 3% enlist in the armed services [7]." In Pennsylvania, on average 73% of graduating students are college-bound.

In the 2005-2006 school year the average SAT scores were higher than the national average: 527 for verbal versus 508 national average and 536 for mathematics versus 529 national average [7]. This makes Mechanicsburg Area School District 23% higher than the average high school in Pennsylvania.

Building	Enrollment	Average	Free &	Date of
		Daily At-	Reduced	Building
		tendance	Lunch	Renovation
		(05-06)	Eligibility	
Broad St. (Gr. K-5)	276	95.7	15.2%	Planned
				2007
Elmwood (Gr. K-5)	448	96.3	37.5%	2005
Northside (Gr. K-5)	253	97.2	25.6%	Planned
				2007
Shepherdstown (Gr. K-2)	308	96.2	12.9%	2006
Upper Allen (Gr. 3-5)	316	96.7	12.3%	2006
Middle School (Gr. 6-8)	891	96.2	18.5%	2004
High School (Gr. 9-12	1227	94.1	12.8%	2002
TOTAL	3719	96.2	18%	

 Table 4.1:
 Mechanicsburg
 Area
 School
 District
 Demographics
 [7]

Though Mechancisburg Area School District may not exemplify urban or inner city schools, it is a good example of a suburb school district. These are the kinds of students addressed in the technology survey and focus groups.

4.1.2 Survey Design

Lori Carter designed and conducted a survey of nine high schools in California to "determine why more students with an apparent aptitude for Computer Science did not consider it as a future major [39]." Her survey was modified and used, with her permission, for this survey. The modifications include changing some of the options, such as the selection of courses, to better match the Mechanicsburg Area High School. A section on Interests in High School was added to determine where Computer Science fell in student's favorite and least favorite courses. Another

section on the use of technology was added to affirm the analysis of the

Y-Generation and a section identifying technology terms was also added to

determine what student impressions were of current "buzz" words.

		Technology	/ Survey		
1. The following information will be kept confidential and is only used for sta purposes.			dential and is only used for statistical		
	Gender 🛛 Male	☐ Female	Age		
Inte	erests in High Schoo	I			
2.	What are your 2 favor	ite classes in High Sc	hool?		
3.	What are your 2 least favorite classes in High School?				
Us	e of technology				
4.	What technology do y	с , ,	110,		
	iPod or other MP3		omputer/laptop		
5.	Cell phone What technology would	ot 🗌			
0.	what teenhology wou				
6.	What is the main thing you use computers for?				
7.	How many computers does your family have at home?				
8.	What are your favorite websites? Circle the one you think is the coolest.				
9.	What classes in techn	ology have you? (chec	ek all that apply)		
	☐ Keyboarding	□ Graphics	🗖 Multi-Media / Digital Photo		
	Programming	□ Network Certific	cation Hardware		
	\Box Use of the Internet	Databases	U Web Design		
	Computer Applicat	ions (Word, Excel)	□ Other:		
10.	What have you learne that apply)	d about computers th	at you've picked up on your own? (check a		
	Upgrading my com	puter hardware (addi	tional memory, graphics cards, etc.)		
	Upgrading my com	puter software (new v	ersion of Operating System, Browser)		
	□ Application progra	m installation	□ Website development		
	Set up home netwo	ork	\square Installed new Operating System		
	Programming		□ None		
	Other				

Figure 4.2: High School Technology Survey - Page 1

11. What would you love to				
12. What would you like yo in your life.	our major to be in	college? List yo	ur top 2 choic	es at this poin
13. Quickly read each term	n in the list below :	and react based	on your first i	impression
whether you think the	term "Boring", "Ne	utral", or "Excit	ung" or don't k	now what it is
Term	Boring	Neutral	Exciting	What's This
iPhone				
Programming				
Game Development				
Virtual Machine				
Networking				
Graphics				
Phishing				
Open Source				
Wiki / Blog				
Linux				
Security				
Bandwidth				
Firewall				
E-commerce				
Flashdrive				
Spyware				
Voice Over IP				
Web Development				
Robotics				
Artificial Intelligence				
•		•		

Figure 4.3: High School Technology Survey - Page 2

4.1.3 Subject Privacy and Confidentiality

Cho et. Al. indicates in Privacy Issues in Internet Surveys [42] there are four forms of privacy: Physical privacy; Anonymity, or informational privacy; reserve, or psychological privacy; and intimacy, or interactional privacy. He defined physical privacy as "the state of privacy in which persons are free from unwanted intrusion or observation [42]." Anonymity, or informational privacy as, "the desire to have control over the conditions under which personal data are released [42]." Reserve, or psychological privacy as "the control over release or retention of personal information to guard one's cognitions and affects [42]." And Intimacy, or interactional privacy as "relevant to relationships in social units as it preserves meaningful communication between individuals and among group members [42]."

Mark Stamp defines confidentiality as the prevention of the unauthorized reading of information [101].

In the High School Students Technology Survey, the privacy they might be concerned with is informational privacy as defined by Hyunyi Cho and Robert LaRose. Since most of these students are under 18, an IRB was established with Messiah College to protect their rights as participants. Since the survey was also used to solicit involvement in the Focus Groups, student names and availability was necessary. To provide privacy and confidentiality, the cover sheet of the survey was designed to be removed and kept in the custody of the High School Guidance Counselor. This cover sheet provided an introduction to the survey and contact information for the researcher. It also requested the student's name, his/her willingness to participate in the focus group and his/her availability for the focus group.

Technology Survey

Purpose of study

The purpose of this study is to understand the perceptions and attitudes you, high school seniors have toward technology and studying computing how those perceptions and attitudes were formed.

Description of study procedures

There are two levels of participation. The first level of participation is filling out this survey. Filling out this survey constitutes your consent to this level of participation.

The second level is to participate in a focus group to be held after school. The focus group will last approximately 90 minutes. Immediately following the focus group you will have an opportunity to ask questions of a college professor regarding college and possible technology majors. After all the focus groups have been held, a final questionnaire will be given. After that you will be entered in a drawing to win an iPod Nano.

Your name will only appear on this cover sheet and will be retained by the guidance counselor. All information will be kept private. You will not be identified in any publication or presentation of the study findings. All documents from this study will be kept confidential.

Your decision whether or not to participate is completely up to you. If you decide to participate, you are free to withdraw at any time. You may also choose not to answer questions on the questionnaires. I may also choose to withdraw from this study if it is in your best interest.

Contact persons

If you have any questions related to the research please contact: Principal Investigator: Scott Weaver Email: <u>sweaver@messiah.edu</u> Phone: 717-766-2511 x3785
Please check one of the following.
I am not willing to participate in a focus group.
I am willing to participate in a focus group. Check all the dates below that you are available. If you want a friend with you, write their name down.
Mon, February 9 Thu, February 19
Tue, February 10 Mon, February 23
□ Wed, February 11 □ Tue, February 24
Tue, February 17 Wed, February 25
□ Wed, February 18
Name: Friend:
0901305

Figure 4.4: High School Technology Survey - Cover Sheet

4.1.4 Subject Selection

The population that was chosen for this survey was the Juniors and Seniors at Mechanicsburg Area High School. Juniors and Seniors were selected due to their chronological proximity to choosing a college major. This sample is not intended to represent a broader population of high school students in the United States and is satisfactory for the needs of this research.

4.1.5 Distribution and Response Management

In order to distribute, explain, and collect the technology survey, class meetings were scheduled on separate days for the juniors and seniors of Mechanicsburg Area High School. The survey, reproduced in Appendix D , was hand delivered to the class meetings and distributed to each student during the meeting where they were informed of the purpose of the surveys and the opportunity to participate in one of many scheduled focus groups. Students were given the option to participate or not to participate as they saw fit. The surveys were then collected and the identifying information removed.

590 surveys were administered to the Juniors and Seniors. 417 surveys were collected, 5 were obviously off-task and/or unusable leaving 412 surveys, a 69.4% return rate.

4.1.6 Survey Piloting

Prior to administering the survey to the high school students, a pilot of the survey was conducted with 6 college students. The focus of the pilot was on ease of use and understandability of the survey. The purpose was to eliminate ambiguity, estimate the time required to take the survey, shorten survey where necessary,

rework troubled areas, and clarity any questions that arose. After the pilot, revisions made based on the feedback given and the survey was conducted.

4.1.7 Overview of the Survey

The purpose of the survey is to gather data in four areas: Demographics, Interests in High School, Use of Technology, College focus, and opinions of technology-related terms.

Demographics The demographics collected include gender and age.

Interests in High School The section on interests in high school asks students what their favorite and least favorite classes are. The purpose of this section is to get an idea of the classes preferred and those most disliked by high school students.

Use of Technology In the Use of Technology section the first five questions revolve around what the student knows, perceives and enjoys. The last questions in this section ask students about what they have learned about computers and technology, both formally as well as informally.

- 1. What technology do you use regularly? (check all that apply)
 - (a) iPod or other MP3 player
 - (b) Computer/laptop
 - (c) cell phone
 - (d) other:
- 2. What technology would you love to use/own if you could?
- 3. What is the main thing you use computers for?

- 4. How many computers does your family have at home?
- 5. What are your favorite websites? Circle the one you think is the coolest.
- 6. What classes in technology have you taken? (check all that apply) with the following ten options.
 - (a) Keyboarding
 - (b) Graphics
 - (c) Multi-Media / Digital Photo.
 - (d) Programming
 - (e) Network Certification
 - (f) Hardware
 - (g) Use of the Internet
 - (h) Databases
 - (i) Web Design
 - (j) Computer Applications (Word, Excel ...)
 - (k) Other
- 7. What have you learned about computers that you've picked up on your own? (check all that apply)
 - (a) Upgrading my computer hardware (additional memory, graphics cards, etc.)
 - (b) Upgrading my computer software (new version of Operating System, Browser..)
 - (c) Application program installation

- (d) Website development
- (e) Set up home network
- (f) Installed new Operating System
- (g) Programming
- (h) None
- (i) Other

College Focus The college focus questions relate to what the student would like to study when in college.

- 1. What would you love to learn about computers?
- 2. What would you like your major to be in college? List your top 2 choices at this point in your life.

Technology-related Terms The technology-related terms section seeks to determine which terms seem exciting to high school students, which are boring and which are either neutral or unknown. The directions for this section instruct the students to "Quickly read each term in the list below and react based on your first impression whether you think the term 'Boring', 'Neutral', or 'Exciting' or don't know what it is." The following terms were listed:

- 1. iPhone
- 2. Programming
- 3. Game Development

- 5. Networking
- 6. Graphics
- 7. Phishing
- 8. Open Source
- 9. Wiki / Blog
- 10. Linux
- 11. Security
- 12. Bandwidth
- 13. Firewall
- 14. E-commerce
- 15. Flashdrive
- 16. Spyware
- 17. Voice Over IP
- 18. Web Development
- 19. Robotics
- 20. Artificial Intelligence

4.2 High School Student Technology Survey Data

The technology survey was administered to over 590 juniors and seniors at Mechanicsburg Area High School. Of the 417 surveys returned, 5 were obviously off

task and unusable leaving 412 surveys representing a return rate of 69.4%. The technology survey data will be presented in five data areas: Demographics, Interests in High School, Use of Technology, College focus, and Technology-related Terms.

4.2.1 Demographics

The gender gap in this survey was very small, only a difference of four with 208 women and 204 men submitting the survey (see Table 4.2). Juniors outnumber the seniors 221 to 191 (see Table 4.3).

Gender	Count	Percent	(Class	Count	Percent
Men	204	49.5%	J	Juniors	221	53.6%
Women	208	50.5%	S	Seniors	191	46.4%

 Table 4.2:
 Gender Breakdown

 Table 4.3:
 Junior/Senior
 Class
 Breakdown

4.2.2 Interests in High School

Two questions in the survey referenced students' favorite courses they had taken in high school. Only subjects that had a selection percentage of 10% or higher are listed in Tables 4.4 and 4.5. Students could indicate interest in several courses. Computer courses made the bottom of both lists. Later in the survey, students were asked what computer courses they have taken. Of those surveyed, 321 students have taken at least one computer related course ranging from Keyboarding to Network Certification or Web Design. Of those students who have taken a computer course, 23 or 7.2% indicated that the computer course was their favorite course whereas two students or 0.6% indicated that the computer course was their least favorite.

Subject	Count	Percent
Social Studies	188	45.6%
Science	117	28.4%
Math	97	23.5%
English	84	20.4%
Speech & Language	54	13.1%
Physical Education	52	12.6%
Art	50	12.1%
Computer	23	7.2%

Subject	Count	Percent
English	88	21.4%
Science	87	21.1%
Social Studies	67	16.3%
Math	55	13.3%
Computer	2	0.6%

Table 4.4: Favorite Class

 Table 4.5:
 Least Favorite Class

4.2.3 Use of Technology

The questions relating to the technology that students use clearly show that the majority have and use the latest technology. Over three quarters of the students use MP3 players and over 90% use cell phones and computers (See Table 4.6). The two most desired technology are Apple's iPhone and a laptop or Macbook (See Table 4.7).

Technology	Count	Percent
iPod/MP3 Player	325	78.9%
Cell Phone	388	94.2%
Computer/Laptop	382	92.7%

Technology	Count	Percent
iPhone	74	18.0%
Laptop/Macbook	68	16.5%

Table 4.6: Technology Used Regularly

 Table 4.7:
 Technology Wanted

Students have, on average, three computers in the home (See Figure 4.5) that they use for many things from school work and communicating with friends to gaming and using the Internet(See Table 4.8).

These students have indicated a wide variety of web sites they call their favorite, listing 160 different web sites. The top sites relate to social networking, online video watching, and Internet searching (See Table 4.9).

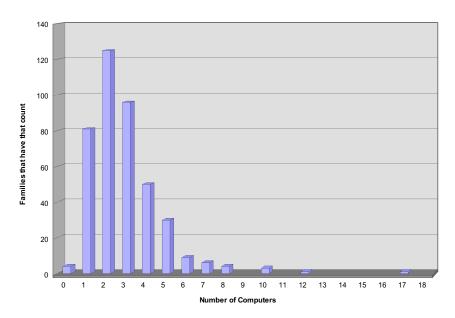


Figure 4.5: Number of Computers in the Home

Computer Use	Count	Percentage
Internet	183	44.4%
Communication	114	27.7%
School/Homework	158	38.3%
Music	62	15.0%
Gaming/Entertainment	57	13.8%
Research	50	12.1%

Table 4.8: Main Use of Computer

Favorite Website	Count	Percentage
Facebook	201	48.8%
Google	122	29.6%
Myspace	88	21.4%
Youtube	54	13.1%

 Table 4.9:
 Favorite Website

321 students of these juniors and seniors have taken a computer class ranging from Keyboarding to Network Certification or Web Design. Most have taken Keyboarding and Computer Applications (See Table 4.10). Over half of the students surveyed have installed a program on a computer and many have upgraded software or hardware. Around a quarter have built a web site, set up a home

Class	Count	Percent	Topic	Count	Percent
Keyboarding	232	56%	Program	218	53%
Computer	151	37%	Installation	210	05/0
Applications	151	3170	Upgrading		
Internet	85	21%	Software	179	43%
Graphics	61	15%	Hardware	142	34%
Web Design	38	9%	Networking	116	28%
Multi-Media	32	8%	Web Site Design	89	22%
Programming	28	7%	Installing a New	96	0107
Hardware	26	6%	Operating System	86	21%
Databases	20	5%	None	85	21%
Network	12	3%	Programming	54	13%

network, or installed a new operating system. Only 13% have done any programming on their own (See Table 4.11).

 Table 4.10:
 Formal Class

Table 4.11: Self-Learned

4.2.4 College Focus

The two questions dealing with studying computers were open-ended and the responses varied widely. Because of this, the cut-off for displaying was lowered to 4% or higher.

Of the first question asked students, "What would you love to learn about computers?" 305 students answered the question with 95 different responses ranging from "nothing" to "build a computer." Most responses mentioned something specific like "how to install memory" or "how to create complex html codes" (See Table 4.12).

The second question asked, "What would you like your major to be in college?" 196 different majors were listed and those above 4% are listed in Table 4.13. Six students indicated they would like to major in computer science representing 1.5%

of responses.

Area of Study	Count	Percentage
Nothing	36	8.7%
Programming	33	8.0%
Hacking	23	5.6%
Build a Computer	18	4.4%
How Computers Work	18	4.4%

Table 4.12: Like to Learn

Major in College	Count	Percentage
Business	34	8.3%
Psychology	24	5.8%
Biology	18	4.4%
Elementary Education	18	4.4%
D C 104		1

Response of 4% or greater shown

Table 4.13:Major in College

4.2.5 Technology-Related Terms

The last area in the technology survey listed current technology terminology and asked students, based on their first impression, if the term was boring, neutral, exciting, or they did not know the term. Table 4.14 lists the terms, the number of students who believed the term to be exciting and those that believed it to be boring. Those that indicated the term was "Neutral" or those that left it blank were left out of the table.

The Chi-square test of association was performed for each term between the responses that indicate the term was exciting and those that believe the term was boring using an alpha of 0.05. All of the terms show a significant difference one way or the other except for "Game Development" which showed no significant difference. The Chi-square calculation along with the P-Value are displayed in Table 4.14. The only terms that were exciting to students were iPhone, Virtual Machine, Graphics,

Term	Exciting		В	oring	Chi-Sq	P-Value		
iPhone	302	73.1%	9	2.2%	276.042	< 0.001		
Programming	37	9.0%	205	49.6%	116.628	< 0.001		
Game Development	138	33.4%	123	29.8%	0.862	0.353		
Virtual Machine	141	34.1%	81	19.6%	16.216	< 0.001		
Networking	52	12.6%	170	41.2%	62.721	< 0.001		
Graphics	134	32.4%	67	16.2%	22.333	< 0.001		
Phishing	35	8.5%	95	23.0%	27.692	< 0.001		
Open Source	21	5.1%	108	26.2%	58.674	< 0.001		
Wiki / Blog	62	15.0%	128	31.0%	22.906	< 0.001		
Linux	35	8.5%	99	24.0%	30.567	< 0.001		
Security	46	11.1%	141	34.1%	48.262	< 0.001		
Bandwidth	22	5.3%	129	31.2%	75.821	< 0.001		
Firewall	30	7.3%	170	41.2%	98.000	< 0.001		
E-commerce	38	9.2%	156	37.8%	71.773	< 0.001		
Flashdrive	71	17.2%	122	29.5%	13.477	< 0.001		
Spyware	54	13.1%	157	38.0%	50.280	< 0.001		
Voice Over IP	62	15.0%	113	27.4%	14.863	< 0.001		
Web Development	93	22.5%	128	31.0%	5.543	0.019		
Robotics	189	45.8%	91	22.0%	34.300	< 0.001		
Artificial Intelligence	210	50.8%	77	18.6%	61.634	< 0.001		

Robotics, and Artificial Intelligence. The rest of the terms the students found boring.

 Table 4.14:
 Interest in Technical Terminology

4.3 Impact of the Technology Survey

The "Interests in High School" section indicates that only two students out of 412, or 0.6% ranked a Computer class as one of their least favorite classes. From the same group, 23 students, or 7.2% ranked a Computer class as their favorite. This data leads the researcher to believe that Computer Science was a viable area of study for students, or one that, in worst case, was not on students' minds.

The next section in the Technology Survey, "Use of Technology", provided insight

into technology students currently have and what they would like to have. Currently students have iPods or some other MP3 player, cell phones, and computers. The technology they would like to have include iPhone and Laptop/Macbook. These were incorporated where possible into the Student-Focused Curriculum. For example, "iPhones" were mentioned in the description of the Software Engineering concentration and the phrase "smart phones" was used in the course description for Wireless Networks and Mobile Computing.

Within the same section 44.4% of the students indicate they use computers for Internet access. The term "Internet" was also used throughout the Student-Focused Curriculum when it fit. The term can be found in the description of the Networking and Web and Media Development concentrations as well as in course descriptions that use the Internet.

The last part of the "Use of Technology" section asked students what formal computing courses they have had and what have they done that was self-taught. The two formal computing courses that ranked the highest in attendance were "Keyboarding" and "Computer Applications". This indicates that a typical student has no experience in courses such as Graphics, Web Design, Multi-Media, Programming, or any of the other classes listed. So in building the Student-Focused Curriculum, it was important to describe courses well in a way that was intriguing. For example a course named Cryptography would mean nothing to these students. In order to help them understand the course and peek their interest the following description was provided.

Cryptography

Students learn how two people can exchange a message in such a way

that no one else can understand it, or cause problems with it. A real-world example is online banking which uses cryptography to ensure online transactions are conducted privately by the authorized person.

The last section in the Technology Survey, "Technology-Related Terms" provided five terms that seemed to excite students: iPhone, Virtual Machine, Graphics, Robotics, and Artificial Intelligence. These terms were used throughout the Student-Focused Curriculum when they were deemed appropriate.

4.4 High School Focus Groups Methodology

On the technology survey, students were given the opportunity to sign up for one of several focus groups offered. The purpose of the focus groups is to elicit student reactions to technology and computers and studying computing in college.

Using focus groups is a method of qualitative research that allows the researcher to listen to the stake holders and learn from them. In this case, high school students are the stake holders from which to learn. Several questions must be answered to determine the usefulness of qualitative methods such as focus groups. "Do you need to explore poorly understood topics and discover new insights? Do you need to investigate the contexts in which your participants operate and generate in-depth data about the range of things that matter to them? Do you need to interpret how and why people think and act as they do [84, p13]?"

The answer to each of these questions indicates the need for this study. "Do you need to explore poorly understood topics and discover new insights [84, p13]?" Yes. Understanding high school students' perceptions of computer science and how studying computing fits into their world view is key to understanding the decline in enrollment. Without their input, the reasons for the drop in computing majors over

the last five years [111] will continue to be guesswork.

"Do you need to investigate the contexts in which your participants operate and generate in-depth data about the range of things that matter to them [84, p13]?" This generation of high school students has grown up with computers and are not afraid of technology. Gathering in-depth data about the things that matter to them will shed light on their perceptions and attitudes toward computers and will give insight to understand what excites them about computers.

"Do you need to interpret how and why people think and act as they do [84, p13]?" The primary goal of this study is to understand high school students' attitudes and perceptions of computers and studying computers in college. Implicit in the second part of that goal is their choice not to study computers in college. Utilizing focus groups will provide a glimpse into understanding why students have stopped choosing to study computers in college.

According to David Morgan, there are five phases of conducting successful focus groups: Planning, Recruiting, Moderating, Analysis, and Reporting [84].

In planning for the use of focus groups, identifying and developing solutions for several key issues, identified by David Morgan [86, p10], will make a difference during execution of the other phases of the focus group research.

- Define the purpose and outcomes of the project
- Develop the timeline for the project
- Determine who the participants will be
- Write the questions in the interview guide

• Develop a recruitment plan

- Set the locations, dates, and time for the sessions
- Design the analysis plan
- Specify the elements of the final report

Purpose

The purpose of this focus group research is to understand high school students' technical abilities and computing savvy; to explore the reasons they are not choosing to major in computing; to investigate the contexts in which they operate; to generate in-depth data about the range of things that matter to them; and to understand what they think about computing and what causes them to choose other majors.

Expected Outcomes

It is expected that this research will provide valuable feedback that may be used to better communicate to high school students, guidance counselors, and parents what computing is and what opportunities await those who study this discipline.

Time Line

There are four major tasks that need to be completed for this focus group research to be successful.

- Planning The planning phase develops the framework from which the study will be conducted. Expounding on the issues raised above affects the rest of the study.
- 2. Recruiting During this phase careful planning must go into choosing and inviting the participants. "There is nothing more frustrating and embarrassing than to go through all the effort to put together a focus group and have only three people show up [86, pp10,11]."

- 3. Moderating Moderating is the part of the focus group research that most people think of when talking about focus groups. It is the group time during which the moderator guides discussions and is "involved in a complex process of generating and analyzing data [85, p10]."
- 4. Analysis The last task in the focus group research is the analysis of the data collected. The planning of this phase takes into account the scope and purpose of the project.

ID Task Nam	Took Nomo	ask Name Start	Finish	Duration	Oct 2008	Nov 2008			Dec 2008					Jan 2009				
	Task Name				10/19 10/26	11/2	11/9	11/16	11/23	11/30	12/7	12/14	12/21	12/28	1/4	1/11	1/18	1/25
1	Planning	10/20/2008	11/7/2008	3w														
2	Recruiting	11/3/2008	12/26/2008	8w														
3	Moderating	11/17/2008	1/9/2009	8w														
4	Analysis	1/12/2009	1/30/2009	3w														

Figure 4.6: Planning Timeline

The Players

There are several groups of people to think about when developing focus groups: the sponsor(s), moderator(s), and participants. The sponsor or sponsors of a focus group research project are those people who benefit from the results of the research project. In this research study, the benefactors are future high school students, guidance counselors, parents, and colleges that offer the Computer Science major.

The moderator is the person who actually facilitates the focus group discussion. The moderator takes the Interview Guide and follows it, keeping in mind that the main goal of moderating is getting to the "why" behind participant responses; truly understanding what they are saying. The moderator and the sponsor in this study are the same, namely the researcher.

The participants are those chosen to be a part of the focus group. In this study, the participants are juniors and seniors at Mechanicsburg Area High School.

Interview Guide

The Interview Guide contains the plan for moderating the focus groups. The first decision to make in developing the Interview Guide is the type of guide. There are two kinds of guides that can be developed, a topic guide or a specific question guide.

"The topic guide is a list of topics or issues to be pursued in the focus group. The list consists of words or phrases that remind the moderator of the topic of interest. By contrast, the questioning route is a sequence of questions in complete, conversational sentences [83, p9]." There are advantages and disadvantages to both. The following were taken from David Morgan's Developing Questions for Focus Groups (Focus Group Kit) [83].

The advantages of the two kinds of interview guides are as follows:

Topic Guide

- Questions developed more quickly.
- Questions more conversational when asked since the full sentence is developed on the spot.
- Allows the moderator to be more spontaneous, weaving previous comments into future questions.

Question Guide

- Sponsor confidence since the questions and path are well established.
- Quality analysis because it reduces subtle differences in questions.
- Enhanced consistency when different moderators are being used.

The disadvantages of the two kinds of interview guides are as follows:

Topic Guide

- Makes the analysis more difficult since changes in questions can cause changes in meaning.
- Difficult feedback prior to focus groups.
- Inconsistency between moderators.

Question Guide

- Asking the questions has the potential to be awkward.
- Development time is longer.
- False impressions to the sponsor, since they may think the moderator will ask the question exactly as written, which is not often the case.

The Interview Guide was developed as a specific question guide, identifying the questions to be asked. However, during the sessions, the goal is to understand the students. Therefore, if necessary, deviation from the guide may be required. The Interview Guide is copied in Appendix E.

Recruitment Process

In planning the recruitment process, several issues need to be addressed: define the target population, identify the appropriate composition for each group, develop eligibility and exclusion criteria for individual participants, make the initial recruitment contacts with potential participants, and determine the follow-up procedures that will ensure attendance [86, p11].

This study allowed the high school juniors and seniors to self-select rather than recruiting specific students, providing a random mix of students that enjoy studying computers with those enjoying other disciplines. In order to facilitate a self-selection process, it was decided, with the suggestion of the principal of Mechanicsburg Area High School, to address the junior class during one homeroom period, and the senior class during another. The recruitment script can be found in Appendix F.

Focus Group Scheduling

The selection process was part of the Technology Survey. The front sheet of the survey, which was designed to tear off, allowed the student to indicate their name and the name of a friend with whom they would like to be in a focus group. Several dates were listed and students were asked to check all the dates that they were available. The front page, being detachable, allowed the students to answer the questionnaire anonymously, and still facilitated scheduling the students for each focus group.

To entice students to participate, one participant would be chosen at random to win an iPod. This was effective in recruiting 87 juniors and 28 seniors to participate in a focus group. Students were then put into focus groups based on the dates they chose along with the friends they requested. The groups were limited to a maximum of ten students to allow dialog and input from all students in the group.

The Setup of Each Focus Group

The focus groups were planned after the school day ended, beginning at 3:30 p.m. with 5:00 p.m. being the target ending time. Pizza and soda were provided at 4:15 which was also a good recruiting tool for high school students.

The chairs in a class room within the school were rearranged into a semi-circle with

the voice recorder positioned in the center. A flip chart was attached to the wall to allow key points to be written down. The initial plan was to have a moderator who would facilitate the discussion along with one or two secretaries to write down key points made by the students. However, only the moderator was available for the focus groups, therefore, the moderator relied on the flip-chart to enable him to summarize the discussions. The transcript of the voice recordings of the focus groups alone was relied upon for the analysis of the discussions.

Conducting the Focus Group

At the start of each focus group, students were greeted by the moderator and invited to take a seat. Once all participants arrived, introductions were made and a sign in sheet was passed around. The sign in sheet was only used to randomly draw a winner of the iPod. The Interview guide was then used to guide the rest of the focus group session.

Analysis and Final Report

The analysis and final report of the data from focus groups is documented in the next section, section 4.5. The outcome of the focus groups aided in developing the Student-Focused Curriculum used in the Survey Instruments explained in Chapter 5.

4.5 High School Focus Groups Data

The purpose of the focus groups is to elicit student reactions to technology and computers and studying computing in college.

The interview guide for the focus groups can be found in Appendix E. The questions were designed to understand high school students' perceptions and opinions in three areas: technology and computers, computer related majors in

college, and the job opportunities for those graduating with a degree in computing. The moderator of the focus groups used the interview guide to conduct each session. The main goal of the moderator was to understand why students respond the way they do.

4.5.1 Introductory Questions

At the start of each focus group, students were greeted by the moderator and invited to take a seat. After preliminary introductions and instruction, the moderator proceeded to use the Interview Guide. The first questions in the Interview Guide were introductory questions designed to ease student anxiety and make them comfortable responding in the group. Some of these questions shed light on the perceptions students have of technology.

Question 1: Tell us your name and what your favorite web site or computer game is.

The rationale for this question is to give students an easy question that each can answer adding to their comfort level within the group. Many students enjoy action games such as Halo while others enjoy Guitar Hero, Bejeweled, and Tetris.

Question 2: Describe the benefits of using technology and computers.

The rational for this question is again to make students comfortable in contributing to the discussion. Many students indicated getting things done faster and more efficient.

- Contact People, Email, Instant Messaging
- Fast

• Store information

Question 3: In your view, what is the difference between technology and computing? Which term is more appealing? Is there another term that fits better?

The purpose for this question was to determine the students' connection between technology and computing. The following were the top responses:

- Technology is the broad thing; computers are the slice of it.
- Technology is anything that gets something done; done faster and easier.
- Computers are a branch off of technology, but are totally different.

Question 4: When you think about computing, what comes to mind?

The term "computing" appears in the title of computing majors in some college. This question was designed to determine what comes to mind when students see a major with "computing" in the title. Most students connected "computing" with mathematics and not computer science. The following are common responses:

- "Mathy" It sounds like a math term.
- Like calculating something or figuring something out. Getting an answer to a math problem.
- Make quick calculations
- Solve problems efficiently

4.5.2 View of computers in general

Following the introduction, questions were introduced to elicit student opinions of computers in general.

Question 1: What excites you about computers?

This is one of the key questions in this survey designed to determine what aspects of computers motivate these students. The most frequent response related to communicating with friends. Students listed applications that excite them and many of those applications, such as Facebook, relate to social networking.

- Communication / Communication around the world / Convenient communication / Possibilities for communications
- Always improving / Always getting better / Get information faster
- Building computers
- Continuously changing
- Different formats of web sites
- Editing movies / Making movies
- Entertainment / Games
- Helps with homework / Makes calculations and physics easier
- Organization

Question 2: What has been your greatest disappointment in using computers?

Much like the previous question, this question is designed to understand what de-motivates students. Most responses refer to problems resulting from malicious attacks such as viruses, spam, and pop-ups, or problems with the machine or operating system itself. Some mentioned cost while a few admitted to wasting time. The responses below are ordered by frequency.

- Malicious attacks
 - Viruses
 - Spam / Junk Mail
 - \circ Popups
 - Hacking
 - Predators
- Problems with the computer itself
 - $\circ~$ Incompatibilities
 - Batteries dying
 - $\circ\,$ Slow / Slow Internet
 - $\circ\,$ Windows' browser is slow and crashes a lot
 - $\circ\,$ When they are programmed wrong
- Expensive / Expensive upkeep / Cost
- Accidentally delete stuff
- Addiction waste hours

• Advance too fast, you need to keep upgrading and getting new parts, as soon as you get them, better stuff comes out

Question 3: If you could change anything about computers and computing, what would you change?

This question was designed to determine what students think can be changed and made better. Responses to this question may give insight into what some students would be motivated to study. The results range from responses related to support, hardware, malicious attacks, software, personalization and compatibility.

- Better Tech Support
- Hardware
 - Faster / Speed
 - $\circ~$ Quieter fans
 - Smaller / More powerful / Longer lasting batteries
 - Make everything wireless
 - Smaller physical size (the size of playing cards type size)
- Addressing Malicious Attacks
 - $\circ\,$ Automatic system to keep spam and virus es out / Get rid of spam
 - No popups
- Software
 - More helpful "Help"
 - Easier updates / Upgrades

- Personalization
 - $\circ~$ More personalized
 - $\circ~$ Let the user do stuff
- Compatibility
 - $\circ~$ More universal hardware
 - Make everything universal

4.5.3 Job Opportunities in Computing

The next section in the Interview Guide focused on job opportunities for those graduating with a computing degree. In the pilot focus group, this section came after the section relating to initial thoughts of college. However, responses to the questions in that section relating to creating a computing major and what it would look like, focusing on the pedagogy rather than the content. When questions relating to jobs were asked before questions relating to the major, students were more apt to think in terms of skills they need for the jobs, and therefore responded better to those questions relating to topics in a major.

Question 1: What kind of jobs do you think are available to those who major in computing?

This question is designed to determine what jobs students think relate to studying computing. Many students responded with, "Anything. Computers are everywhere, so if you studied computers, you could choose almost any job and it would relate" and "Few jobs don't use computers." There were other responses focused on specific jobs as shown below.

- Programming / Programming for games, optical displays, software applications
- Tech support / Technician / Geek Squad
- Teachers
- Web design / Web site development / Graphic design
- Advertising
- Computer Network Specialist
- CSI jobs / Forensic Scientists
- Designers
- Engineer
- IT people / Security
- Manager of like a server system
- NASA / National Security Agency
- Xray Technicians

Question 2: If you study computing in college, what do you think your job opportunities would be when you graduate?

The purpose of this question is to determine what students think of the job market and possibilities after graduating with a computer related degree. The responses to the question asked as stated above were, "Average", "Pretty open", "A lot easier" and "Very likely". To determine just how likely, the question was rephrased to, "On a scale from 0 to 5, how easy will it be to get a job if you graduate with a

degree related to computers? Zero indicates, 'Good luck with that' and five indicates you have a job before you graduate." All students chose between 4 and 5 indicating they think it would be very easy to get a job.

Question 3: Have you heard of outsourcing?

This question was added into the Interview Guide due to the responses of the previous question. It appeared that when thinking about people who study computers in college, there was no fear in getting a job after college. So this question was asked to determine if these students have heard of outsourcing. If they have, then it must not affect the job opportunities they are thinking about. Only four students could define outsourcing. However, once defined, others indicated a recollection of the idea.

Question 4: If you got a job using technology of some sort, what would your dream job look like?

The purpose of this question is to understand what motivates students to pick a job or career. Many students identified specific jobs such as pastry chef, civil engineer, computer teacher, and marine biologist. Some identified characteristics of an ideal job and those are listed below.

- Serves some sort of purpose
- A little work with a lot of pay
- Doesn't work me to death
- Fridays off
- Leaving work at work

- No job stress
- Physically see my progress

Question 5: What do you think you need to study to get a "computing" job? This question seeks to understand what areas of study students connect with "computing" jobs. The responses varied and are shown below.

- How to use a computer
- Learn C++ / Java and all those languages / Different languages.
- Math
- You'd have to work with people

4.5.4 Initial thoughts of College

The next section in the Interview Guide focuses on the students' thoughts of college and what students will be studying in college.

Question 1: Have you thought about what you'd like your major to be when you go to college?

The purpose of this question is to transition the focus to college and determine the types of majors represented by those participating in the focus groups. The results show a wide range of interests on the part of the students participating in the focus groups, only two of which were computer related: Fix computers and Web design.

• Accounting

130

- \bullet Art
- Business
- Civil Engineering
- Criminal Justice
- Culinary Arts and Music
- Early Childhood Education / Elementary Education
- Economics
- English
- Finance
- Fix computers
- Math
- Physical Education
- Psychiatry
- Psychology
- Small Business Management
- Social Science
- Special Education
- Teaching with wood or metal technology
- Web Design

Question 2: What aspects of that major interest or intrigue you?

Since very few students indicated an interest in computer related majors, this question was posed to understand what drives students to their chosen major. Many students responded that they like the subject matter of their chosen major. There were, however, several responses that intimate attitudes towards their chosen major, many of which could relate to computer related majors.

- My chosen major is more realistic for me and who I am
- I like the design part and making stuff
- I like figuring things out / Problem solving
- I want to travel

الم للاستشارات

• Since I was little, I loved the topics in my chosen major

Question 3: Have you looked at any college web sites to learn about their majors? What were your impressions of the web site?

The purpose of this question is to understand student interaction with college web sites and what things they look for. Very few students surf college web sites to look at their chosen major's curriculum. From their responses it appears that they have already made their decision regarding their major and are looking at the web site for other reasons.

- Confusing / Couldn't find what I needed / Not laid out nicely
- Admissions is difficult / Online application would be easier
- I looked at the athletic rankings / Athletics was good

- Easier than mailings
- Easy to navigate
- I look at the financial aspect
- Find if my AP courses would transfer
- Find out about other incoming freshmen
- Freshman and out of state resources

Question 4: Have you looked at any computing majors online? What were your impressions about the majors?

This question was designed to get an idea of what students thought of the online computing major, or any major's curriculum. Unfortunately none of the students looked at any of their chosen majors and therefore could not give feedback about their impressions of the major on the college's web site.

4.5.5 Majoring in Computing

Although few of the students that participated in the focus groups were interested in a computing major, they were asked to imagine majoring in computing and were asked the following questions targeting their perceptions of a major related to computers.

Question 1: When you think about majoring in computing what comes to mind?

The purpose of this question is to understand student perceptions of majoring in computing. Students reflected a stereotype of geeks with pocket protectors staying inside working on their computer all day.

- People with PCs being inside the whole day / Spending a lot of time in front of a computer screen
- Tech Support / Geek squad
- Carpal Tunnel
- Criminal Minds
- Lots of work
- Programming classes

Question 2: What do you hear people say about majoring in computing?

This question seeks to understand what those who influence students' opinions communicate about majoring in computing. Students responded similarly to this question as they did to the one above with the exception of the following excerpt: "I've worked with computers all my life. Why do I need to take classes in it?"

Question 3: Who would you say is the person who has influenced you the most?

The question was asked in the context of the majors they chose and was asked to understand who the people of influence are in today's students' lives. Most students are influenced by teachers and parents/family.

The questions that follow in the interview guide focused on the student's perception of a computer related major. Since most of the students are not interested in a computer related major, some of the questions were dropped and others were reworded to reflect the major of their choice.

Question 4: What influenced you to choose the major you did?

This question, modified from its original form, is intended to better understand what influences the choices students make regarding the major they choose.

- My brother / Parents / Teachers / Friends
- I like working with people / Kids
- I love reading / Writing
- Other people I've seen who work with computers a lot as a primary job
- I like talking
- The money
- My enjoyment level
- I've always grown up helping people so criminal justice seemed to fit
- Learning about the stock market and how to plan stocks / Played a stock market game

Question 5: If you could make your own computing major, what would it look like?

This question seeks to understand what students would like to study in the area of computers. However, since many of the students participating in the focus groups do not plan on majoring in computer science, the question was reworded to, "If you could make up your own college major, what would it be?" It was changed to understand what the students value and would like to study. Most students identified specific courses such as Biology, Art, Child Development, English, etc.

Many of those identified on the technology survey. However, some used terms that gave properties to their major as follows:

- Design
- Hands on
- Mixture of multiple subjects

Question 6: How would you explain the computing major you just created to interest your friends or gain approval from someone in your family?

This question seeks to understand how students would market their major. However, since the question relating to building their own major was changed, this question was also changed to ask student how they would market their major. The question specifically asked, "How would you market the major you designed to other people? How would you get them excited about it?" Many students identified advertising and web sites as the main means of marketing their new major. Others are listed below.

- Responses related to marketing in the high school
 - $\circ\,$ Go to high schools / Places where kids hang out and talk about it
 - Local school newspapers
 - $\circ~$ School radio
 - They could put in agendas that the school gives out. Some random pages, do you enjoy such-and-such-a-subject. Half the kids are going to throw them away but the ones that are interested in specialized degrees are probably going to actually look at it.

- All teachers would be Ph.D.s
- Emails to prospective students
- Funding for that major
- Good teachers
- Interview real Civil Engineers and find out what they like in high school and advertise to them at a college fair
- It would have to be interesting
- Letters / Mail / Postcards

The following questions were added due to the responses to the previous question and are not found in the interview guide.

Question 7: How would you get someone excited about majoring in computers?

This was added to understand what things would motivate students toward a major.

- Advertise on TV
- Have a course that gives an overview of what's exciting about the major
- Offer classes like web design, computer applications instead of programming to high school students because going right into that is stupid and hard
- Talk to people who take similar classes
- Target the teachers in those areas so they can talk to their classes about it

Question 8: What kinds of things would you do on the web site?

The purpose of this question is to understand what things on a web site are important to students.

- Appeal to people that want to go in that direction
- Bright colors and pictures
- Details
- Put the information in obvious places, like student life or student activities

4.5.6 Wrap-up regarding computing

At the end of the formal focus group time wrap up questions were asked to conclude the discussion up and review what students think about computers.

Question 1: Tell me up to five positive things about computing, no matter how small the positive thing is.

The top five responses are listed below:

- Communication
- Makes things (learning / research) easier
- Entertaining / Fun
- The Internet
- Makes things efficient

Question 2: Tell me up to five negative things about computing, no matter how small the negative thing is.

The top five responses are listed below:

- Viruses
- Breakable / Sometimes it doesn't work / Doesn't always work
- Complicated / Confusing
- Advances too quickly / Always updating
- Hacking

4.5.7 Concluding the Focus Group

The ending questions and discussion spurred other discussion that is important to this research. Though the questions were not in the interview guide, once students began discussion it was apparent they should have been added. The following questions were asked at most of the focus groups and the responses reflect student opinions from the majority of those students who participated.

Question 1: What classes here at Mechanicsburg have you taken in computing?

This question was added to understand the courses that have influenced student perception of what computer science is. Most courses students have taken relate to applications such as Excel, Power Point and Word.

• Excel

المستشارات

• Microsoft Word / "They have a lot though, I'm taking Word next year."

- PowerPoint / "PowerPoint and Outlook are together, Word and Excel are by themselves"
- I think Access is a course but I don't think anybody takes it
- Graphic design
- Web design
- Communicating with pixels
- In 6th grade we learned about computers but I can't remember what we learned
- IT Essentials 1 teaches you software and how to use and troubleshoot programs
- IT Essentials 2 teaches you the fundamentals of hardware and how to properly switch things out

Question 2: What has been good about those classes?

This question seeks to understand the positive aspects of the classes that have influenced the students' opinions. Many students learned a lot in the class.

- I learned a lot
- You have them everyday
- I liked the photography one.
- You get to teach yourself.

Question 3: What has been bad about those classes?

- It's a class
- The person who is teaching it
- The class was annoying because it's stuff we already know
- Word was like all typing, it was terrible

4.6 Impact of the Focus Groups

The majority of the students that volunteered for the focus groups did not intend to pursue Computer Science in college. Therefore, the results of the focus groups influenced the Student-Focused Curriculum in a more holistic way. For example the term "Computing" wasn't used by itself anywhere in the curriculum because these students viewed the term as a mathematics term rather than a computer term. "Technology" in a similar way was used wherever the discipline was addressed because, according to the students, "technology" is the broad term and "computers" are simply a slice of it.

According to the students, the idea that computers are ever changing, evolving and getting better was exciting, so where possible this idea of making things better and evolving influenced the Student-Focused Curriculum. The introductory paragraph includes references to "rapid advances", "dramatic changes in society", and "rapidly evolving discipline" in order to incorporate this idea.

Students that took part in the focus groups believe that jobs are available to those who study Computer Science. In a scale of 0 to 5, students rated the ability to get a job after studying Computer Science at 4.5 indicating that graduates should be

able to get a job immediately after graduation. This influenced the Student-Focused Curriculum by the addition of what employment recent graduates have acquired in each of the concentration areas. The employment section was added also in part because of the stereotype that these students expressed. The idea was to show job possibilities that push against the stereotype.

During the High School Focus Group study, it was learned that students became disinterested in Computer Science based on the courses they had been taking. They equate Computer Science with any course they have taken that focuses on computers in some fashion. Courses like on teaching students how to use Microsoft Office were included in the list of computing courses though those courses do not reflect the nature of the Computer Science discipline. Other courses more accurately present Computer Science, though only a portion of it. Students are learning about Computer Science like the proverbial story of the blind men learning about an Elephant (See Appendix K). Work is currently being done to address the curricular issues at the high school through Exploring Computer Science [60].

4.7 College Student Delphi Study Methodology

Building the Student-Focused Curriculum in this dissertation requires knowing the interests of the target audience which is high school students that will be pursuing further education after graduation. Focus groups provided broad information about what information students refer to when choosing a college. Unfortunately, the data from these groups was too broad to use in redesigning the online Computer Science curriculum. In addition, many of the students that participated were not interested in computing majors, therefore, could not provide much help in developing a more attractive computing curriculum.

To concentrate the perceptions of the target audience to possible changes in the presentation of the online curriculum, a Delphi study was conducted with college students majoring in computer related fields. These students were chosen because of their chronological proximity to high school students and because of their interest and involvement in a computing degree. They possess a better understanding of Computer Science than high school students yet are not too far removed to reflect on their high school career; identifying ideas to make the curriculum relate better to today's high school students.

4.7.1 Introduction to the Delphi Technique

The Delphi Technique is a group process that aggregates the opinions of individuals via a series of questionnaires. Linstone and Turoff provide a general definition of the Delphi technique, "Delphi may be characterized as a method for structuring a group communication process so that the process is effective in allowing a group of individuals, as a whole, to deal with a complex problem [78]."

"The Delphi method works especially well when the goal is to improve our understanding of problems, opportunities, solutions, or to develop forecasts [100]." In this study, the "experts" on how to present a computing curriculum that will motivate and encourage high school students viewing it on the web are college students enrolled in a computing program. The Delphi study was chosen because these "experts" provide the ideas for changing the curriculum displayed online, and then together rate the ideas in order of importance. The results of this study influenced the Student-Focused Curriculum.

There are several reasons to using the Delphi study over other alternatives, such as focus groups. The first is the ability to perform the study asynchronously.

Students can participate when they have time, freeing them from the necessity of meeting as a group.

The second reason to use a Delphi study is to allow participants to contribute anonymously, providing an environment in which they are free to voice their opinions [31]. This anonymity extends to all participants. However, administrators of the study must have access to each individual's responses in order to solicit clarification when necessary.

4.7.2 An Overview of the Delphi Technique

The Delphi study, according to Andre Delbecq et. al, uses a series of three questionnaires [49]. The first questionnaire poses a broad question on which participants will comment. The second questionnaire summarizes the responses to the first questionnaire, asking participants to prioritize the top ten summarized responses, ranking them from ten down to one with 10 representing the highest priority. It also asks participants to comment on each summarized response, clearly indicating whether they agree, disagree, or need further clarification. The third questionnaire summarizes the results of the second questionnaire and allows participants to make their opinions known in a final vote of priority, much like the second questionnaire. The final step is to get consensus with the results of the third questionnaire by providing the results of the third questionnaire and asking participants for their assessment of the results.

4.7.3 The Process

According to Delbecq et. al [49], there are ten steps the make up the Delphi process: The Question, Recruitment, Select Sample Size, Develop Questionnaire #1, Analyze

Questionnaire #1, Develop Questionnaire #2, Analyze Questionnaire #2, Develop Questionnaire #3, Analyze Questionnaire #3, and Preparation of the final report. Below, each of the ten steps is identified along with the process taken in this study.

4.7.3.1 The Process Step One – The Question

The first step requires developing a research question that will provide the participants the forum to present their ideas. It is important to develop the question in such a way as to "generate as many feasible responses as possible [82]." For this research the desired responses focus on how to change the presentation of the Computer Science curriculum on the web in such a way that it motivates and encourages students to pursue the study Computer Science.

Two questions were posed in this study:

- 1. If you were looking into a computing program today, what things might generate more interest in pursuing the program further?
- 2. List all the ways you would change how the major is presented that will be exciting and motivating to students who have computing potential.

4.7.3.2 The Process Step Two - Recruitment

The participants in this study are students at Messiah College enrolled in computing majors. The pilot group, a group of six Computer Science seniors, was recruited to evaluate the application used to present the questionnaire as well as the flow of each questionnaire before administered to all participants.

4.7.3.3 The Process Step Three - Select Sample Size

The six students in the pilot participated through each step of the Delphi study before any other participants. At the completion of the pilot, they were asked to critique the process. Things were changed in the process after which 52 students were contacted and asked to participate in the full Delphi study. Of the 52 students contacted 14 students participated in the first iteration, a 26.9% response rate. After the first iteration, the ideas generated by the pilot group were incorporated with those of the full study, bringing the total student participation to 20 out of 52. The pilot study students were included in the invitation for the full study but did not contribute in the first iteration. This brought the response rate up to 38.5%.

During the second iteration nine students participated and in the third iteration, 16 students participated. In all, 30 distinct students participated in some part of this study, a response rate of 58%.

4.7.3.4 The Process Step Four - Develop Questionnaire #1

The use of the word "Questionnaire" comes from the process used by Andre Delbecq et. al [49] that predates the use of email and the World Wide Web. In the process questionnaires would be written out on paper and mailed along with a cover letter through the U.S. Postal Service to each participant. The process would take up to forty days and beyond simply because of the time required in mailing the questionnaires.

This study, utilizing the Internet and online communication, retains the term "questionnaire" even though it no longer fits the mode. Using today's technology, an application was developed to facilitate the Delphi study.

Application Architecture

To facilitate the asynchronous nature of the Delphi study, a web site was developed using PHP on an Apache Web Server running the Linux operating system. Dynamic PHP web pages would access a MySQL database to build the necessary pages, presenting the "questionnaires" to the students and recording their responses. This application was modeled after a Delphi web application developed by Deshpande et. Al [50].

The application is based on a 3-tier web architecture [50] in which the user interacts with the application through a web browser on their computer. The Web Server, Apache running on a Linux system, communicating with the database, MySQL Database Management System, sends the web pages to the user's computer to be displayed by their web browser.

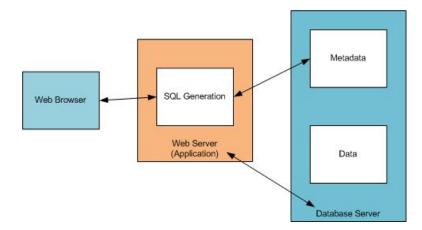


Figure 4.7: The Web Application Architecture

Application Structure

The application's home page provides information about the study including dates for the iterations. Participants can use this page to register using their email address and are provided with a password. Their login would then be their email address along with the password sent to them. After successfully logging in,

participants are directed to the Iteration's Instructions page if the iteration required it. From the instruction page, participants are taken to the Iteration Response page to enter their ideas. A sample session is presented in Appendix G.

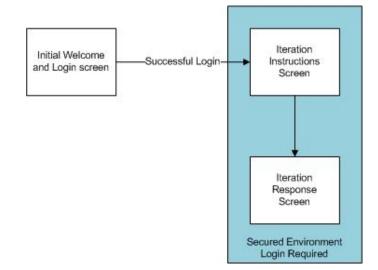


Figure 4.8: The Web Application Basic Flow

The Database Structure The database design, though initially modeled after Deshpande et. Al, was remodeled to facilitate. The key database structures for this application include:

- The User table contains the login and user information
- The Study table allows further Delphi studies to be conducted through this application
- The Iteration table contains the specific iteration instructions and active dates
- The Question and Brainstorm tables are used in the first iteration when participants are not commenting on other ideas, but answering the question(s)
- The Idea and Response tables are used for subsequent iterations to allow participants to comment on and rate all ideas.

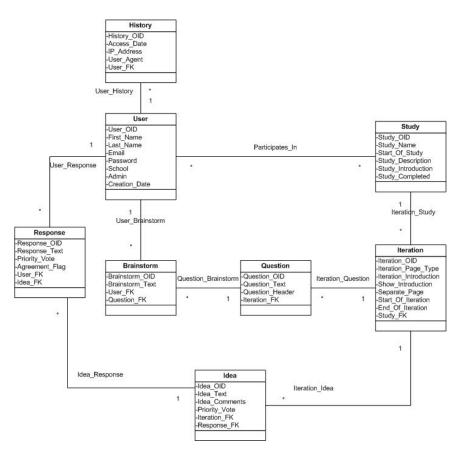


Figure 4.9: The Database Diagram

A Delphi Application Session

The pilot study students were each given their own login through email. The full study participants were invited via email that provided a link to the web site. Once at the web site, they were presented with the opportunity to register for the study. Once their information was entered, an email was sent to their email address with a randomly generated password with which they were able to log into the study.

In the first iteration after a participant successfully logs in, they were presented with the iteration's instruction page. Since the purpose of this Delphi study is to get students to brainstorm possibilities in displaying Computer Science on the web, this instruction page presented links to the computing curricula of Penn State University, Georgia Institute of Technology, Messiah College, Lehigh University, and a fictitious curriculum developed from the First Survey Instrument. Students were encouraged to look at those curricula to get ideas of what to change and how to change it. Once they viewed the provided curricula, they could begin brainstorming by clicking the "Start the Brainstorming" link at the bottom of the iteration instruction page.

The Brainstorming page of the first iteration asks participants to respond to the following two questions:

- 1. If you were looking into a computing program today, what things might generate more interest in pursuing the program further?
- 2. List all the ways you would change how the major is presented that will be exciting and motivating to students who have computing potential.

Students were then given the opportunity to enter as many ideas as they could come up with. The web site was designed so that students could return as many times as

they wanted during the dates when the iteration was active and update or add to what they had already entered.

The student interaction with the other parts of the Delphi application is presented during the discussion of the development of the other questionnaires.

4.7.3.5 The Process Step Five - Analysis of Questionnaire #1

To analyze Questionnaire #1 each of the responses were grouped into broad categories and summarized. "The list should reflect the initial opinions of respondents concerning key variables, yet be short enough for all respondents to easily review, criticize, support, or oppose [49]." The brainstorming ideas of both the pilot and the full study groups generated 42 ideas that were used to build the second questionnaire.

4.7.3.6 The Process Step Six - Develop Questionnaire #2

The second questionnaire is built from the responses of the first questionnaire. The format of this questionnaire displays each item from questionnaire #1 in complete sentences with space for the participants to comment on each item. Participants are also asked to indicate whether they agree or disagree with an item or if they need more information to clarify the idea. Participants are also asked to choose ten ideas they decide are the top ten and to rate them from ten to one where ten is the top priority.

Since the second and third questionnaire no longer focus on brainstorming, but on evaluating ideas already submitted, the ideas and participant responses were stored in the Idea and Response tables of the database. Students were reminded of the dates of the second iteration by email and encouraged to proceed to the web site

and sign-in with their previous information and begin iteration two. Once again, students were able to log in and update or add to their responses within the time frame that this iteration was open. Once the time period expired, the data was collected, analyzed and the next step began. An example of a single item is displayed below in Figure 4.10.

1. Opportunities to put learning into practice with service learning courses, special semester projects, internships, and study abroad.

Figure 4.10: Iteration #2 Example of Single Item

The Process Step Seven - Analysis of Questionnaire #2

"The analysis of Questionnaire #2 should: (1) tally votes for items; and (2) summarize comments made about the items in a form that is both thought-provoking and easy to understand [49]." To tally the votes, since the votes are in the form of ranks, the ranks are summed and a total is given along with the list of individual votes. The total gives the overall rank of the item and the individual list of votes allows the analyst to see the diversity of rankings for each item. In other words, a total rank may be something like 63 which gives the importance of the item; however, the list of initial votes may be 10-9-10-9-6-9-10 which allows the analyst to see that most of the respondents agree, choosing a high priority. Another advantage to the list of responses allows the analyst to contact an individual respondent whose vote was extreme from the rest of the votes. This would provide more information as to the reason he/she voted that way. During the full survey it was apparent that several votes were outliers. It appeared as if some of the students ranked the highest in their top ten using a one rather than a ten. Those students were contacted and asked to clarify their vote and it became

clear that votes where inverted from reflecting their real intent. The votes were adjusted and the analysis continued.

Students who submitted items that needed clarification were also contacted and asked to clarify their thoughts which were included in the next iteration.

4.7.3.7 The Process Step 8 - Develop Questionnaire #3

By questionnaire #3 the issues have been identified and hopefully clarified. The purpose of the third questionnaire is to give a final vote for each item. The format of the third questionnaire is to list each item in complete sentences along with a summary of earlier comments. The previous total rank is also given with the option for participants to once again rank the top ten categories. This also brings closure for the participants.

The third questionnaire is another part of the web site. The students sign-in with their previous information to participate in this third iteration. Once again, a time period is given during which students are able to log in and update or add to their response. Once the time period expired, the data was collected and the next step commenced. An example of an item displayed in the third iteration can be seen below in Figure 4.11. The idea that is presented in Figure 4.11 began the list of ideas that were sorted based on the aggregate of the previous vote. The idea is presented followed by the aggregate vote, which is simply the sum of all votes listed at the bottom of that box. The number of students that indicated they agree and disagree are also displayed. After the information is presented, a vote and comment box are provided for the participant to provide their final assessment.

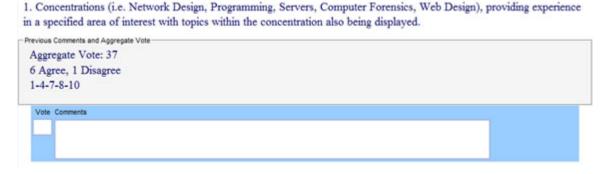


Figure 4.11: Iteration #3 Example of a single item

4.7.3.8 The Process Step Nine - Analysis of Questionnaire #3

The analysis of the third questionnaire follows the analysis of the second questionnaire.

4.7.3.9 The Process Step Ten - Prepare a final report

Since this study is being used to change the curriculum being displayed on a school's website, the final report is actually the redesigned curriculum for Computer Science that will be used in the second survey instrument to be given to students across the United States.

Each participant in this study was contacted with the final results and asked if they concur with the results. Every participant but one agreed to the results. The individual that disagreed indicated he would agree if the fifth item were first. Since more than the first five items were used in presenting a Student-Focused Curriculum, it was assumed that his specific ordering did not matter.

4.8 College Student Delphi Study Data

4.8.1 Iteration 1

The following is a summary of the data from the pilot and full Delphi study.

Question 1: If you were looking into a computing program today, what things might generate more interest in pursuing the program further?

- Adding various concentrations/emphases to the major
- Display details about the major such as languages used
- Display each course focus (i.e. this course focuses on hardware / this course focuses on software)
- Provide an overview of the major
- Provide a list of all the necessary classes
- Provide lists and descriptions of classes offered outside of the 'required' classes
- Identify what students will be learning
- Indicate the goal of the major
- Provide the expected length to completion (i.e. in general 4 years, but could be done in 3 and a half)
- Provide examples of programs and projects students have done (curricular and extra-curricular)
- Identify the Ranking of the program

Question 2: List all the ways you would change how the major is presented that will be exciting and motivating to students who have computing potential.

- More intuitive layout of department website
- Offer high school sit in days (especially for labs)
- Divide the program into concentrations: (Hardware and Software, and maybe specialized programs such as Hardware with Network Design emphasis, or Software with System Automation emphasis)
- Alternatives to high-level math: Require Calculus I (whether MATH 111 or 109 AND 110), and then give options for the remainder (e.g. two of the following: Statistics for CS, Advanced algebra, or Calculus II)
- The curriculum as a PDF is just frustrating
- Include the 'snippet' description on the course list
- Publicly available project demonstrations
- Positions graduates have received (whether grad school or a job) include employer/school and position/area of study
- Extra-curricular activities/programs with which students are/have been involved
- Links to 'real-world' applications for each area/concentration

4.8.2 Iteration 2

The following items represent the summarized ideas from Iteration 2. The summarized ideas from Iteration 1 were presented to the participants who were

given the opportunity to comment on and vote for each idea. The results are shown below.

- Concentrations (i.e. Network Design, Programming, Servers, Computer Forensics, Web Design), providing experience in a specified area of interest with topics within the concentration also being displayed
- A course of web site languages such as HTML, CSS, Javascript, and PHP Comments
 - $\circ~$ Using forward looking practices such as HTML5
 - I'm not sure if there should be a whole course about web site languages
- Developing real-world applications (current research, technology being invented, software being developed) in scenarios that are realistic to a work environment
- A larger variety of programming language courses
- Opportunities to put learning into practice with service learning courses, special semester projects, internships, and study abroad
- Software engineering concentration
- Offer the major as a B.S. degree instead of a B.A. *Comments*
 - yes, yes, yes I agree with this so much it should be a science instead of an art
 - \circ definitely

• Presenting various job opportunities and best to apply my talents to a future profession

Comments

 $\circ\,$ already done by Career Center, Dr Weaver, and others

- An over-arching project for the whole major
- Provide opportunities to use the major outside of class with work study, clubs and organizations (such as robotics, gaming, web design), and volunteer opportunities

Comments

- work study would be great volunteer opportunities especially are great for resumes
- Use of different systems in addition to Win-machines such as Macintosh and Linux systems

Comments

- A class devoted to Linux would be greatly appreciated it's a very popular server architecture
- Provide programming competitions *Comments*
 - $\circ~$ this would be a lot of fun
 - $\circ \ {\rm fun}$
- An Accredited program

- A class that combines hardware and software i.e. taking inputs from an outside/analog source, such as temperature, movement, weight etc, converting it to digital and evaluating it
- Provide a course at the beginning of a student's college career that allows them to experience a very broad idea of the various concentration areas *Comments*
 - $\circ~$ Don't we already have this?
- More options for courses we get to take under our choice options that are more specific in different areas
- Integration of faith into the program
- Alternatives high-level math: Require Calculus I (whether MATH 111 or 109 AND 110), and then give options for the remainder (e.g. two of the following: Statistics for CS, Advanced algebra, or Calculus II)
 Comments
 - Linear algebra would be a good course
- Computer gaming concentration combining computer graphics and programming
- Shadowing a CS student day, or high school sit in days (especially for labs)
- Logical thinking courses, how to think *Comments*
 - $\circ\,$ I'm curious what or how you would do this
 - $\circ~$ This should be an element of all classes, not a separate class

- Provide lectures and conferences for prospective students
- Require students to participate in internships or co-ops, providing an opportunity for students to perform in the real world Comments
 - requiring them could cause scheduling difficulties, but having many opportunities to do so would be good
 - Maybe provide the possibility, but I'm not sure requiring it would be a good idea?
- Recognition amongst the relevant community
- Have a clean, understandable, and modern website with an intuitive layout
- Explain difference between Computer Science knowledge and "computer nerd" knowledge, emphasizing how you need not be good with a computer to study computer science by emphasizing the math, logic, and problem solving aspects *Comments*
 - I would have been more attracted to Computer Science as a major if I had known this
- Provide more courses dealing with information management and other business aspects of the computer industry. Business information is more than just computer systems, it requires management and human resources.
- Express thoroughly that not all Computer related majors are programming intensive
- Work with using and designing IS in the real world: ERP (SAP or Oracle), CRM (Siebel), and knowledge management

- Links to "real-world" applications for each area or concentration *Comments*
 - maybe showing alumni work, see what graduates have done

4.8.3 Iteration 3

The following items represent the summarized ideas from Iteration 3. Participants were presented the ideas from Iteration 2 sorted by aggregate vote. The vote was also provided to them and they were given the opportunity to vote once more. The following are the results of Iteration 3 sorted in descending order by aggregate vote. Below each item are the individual votes as well as the total aggregate vote for the idea.

- - More specific concentrations like computer forensics and web design would be very attractive. Not many people know what exactly Computer Science entails. I would be interested in taking classes in computer forensics and web design
 - Computer Science is too broad of a topic: this would be very useful in classifying the direction of study.
- Developing real-world applications (current research, technology being invented software being developed) in scenarios that are realistic to a work

environment

Votes: 10 - 10 - 9 - 9 - 8 - 8 - 7 - 7 - 6 - 5 - 3 - 2 Total: 84 Comments

- Real-world and current technology is critical for computer scientists, for technology changes too rapidly to be learning outdated material.
- Developing real-world applications are a great way to introduce what kinds of projects we may be working on when we get jobs after school.
- 3. Opportunities to put learning into practice with service learning courses, special semester projects, internships, and study abroad *Votes*: 10 10 10 9 8 8 7 6 6 2 *Total*: 76 *Comments*
 - Computer Science as a major is more about the action than the learning; we need more action involved in class.
 - Giving us opportunities to put our learning to practice in things such as projects or internships would be a good way to get CS majors to use their knowledge and put it to practical use.
- 4. A course of web site languages such as HTML, CSS, Javascript, and PHP Votes: 9 - 9 - 8 - 8 - 8 - 8 - 7 - 7 - 3 - 1 Total: 63 Comments
 - I was interested in web design when coming to Messiah, but there is no specific course in learning the language like Programming I for Java.
- 5. Provide opportunities to use the major outside of class with work study, clubs and organizations (such as robotics, gaming, web design), and volunteer

Votes: 9 - 8 - 7 - 7 - 7 - 7 - 6 - 4 - 4 - 2 - 1 Total: 62 Comments

- As previously mentioned, great for resumes.
- 6. Provide a larger variety of programming language courses *Votes*: 9 9 7 6 5 4 3 *Total*: 43
- 7. Use of different systems in addition to Win-machines such as Macintosh and Linux systems

Votes: 8 - 6 - 5 - 5 - 5 - 3 - 3 - 2 - 1 - 1 Total: 39

Comments

- I think it would be great for CS majors to be taught the differences between different operating systems such as Mac and Linux. It would be good to have courses that deal with all three OS's.
- Links to "real-world" applications for each area or concentration Votes: 9 - 8 - 7 - 6 - 4 - 2 Total: 36

Comments

- Real world applications would be great especially for concentrations. This way more students will be interested because they could find something that interests them in their concentration.
- 9. Offer the major as a B.S. degree instead of a B.A.
 Votes: 8 7 7 7 6 Total: 35
- More options on the classes we get to take under our choice options that are more specific in different areas

Votes: 10 - 8 - 5 - 4 - 4 - 2 Total: 33

11. Software engineering concentration

Votes: 8 - 7 - 6 - 5 - 3 Total: 29

12. Express thoroughly that not all Computer related majors are programming intensive

Votes: 9 - 6 - 4 - 3 - 1 Total: 23

Comments

- Most people think CS is just programming. When advertising the CS major at Messiah, it is important for people to know that there is much more than just programming.
- 13. A class that combines hardware and software i.e. taking inputs from an outside/analog source, such as temperature, movement, weight etc, converting it to digital and evaluating it *Votes*: 6 5 5 4 2 *Total*: 22
- 14. Require students to participate in internships or co-ops, providing an opportunity for students to perform in the real world *Votes*: 7 6 5 3 1 *Total*: 22

Comments

- Critical for entering the work force.
- Definitely provide the possibility, but not require.
- Perhaps not requiring, but having more opportunities to do so is always good.
- 15. Provide a course at the beginning of a student's college career that allows them to experience a very broad idea of the various concentration areas

Votes: 9 - 8 - 5 *Total*: 22

- 16. Provide more courses dealing with information management and other business aspects of the computer industry. Business information is more than just computer systems, it requires management and human resources *Votes*: 9 5 4 2 2 *Total*: 22 *Comments*
 - It's good to have a wide spectrum of classes from business to CS so that people know that they can get a job in their specific concentration.
 Learning about business aspects is great for a CS major so they can see if they would want to get a job in business, BIS, or CS.
- 17. Showcase graduates, statistics on placement after graduation and current careers, present the major in a way that emphasizes the ease of finding a job with a Messiah degree and Messiah's contributions to the field *Votes*: 8 7 7 *Total*: 22 *Comments*
 - It would be helpful for incoming students to be able to see what Messiah grads are doing with their CS degree. It will be encouraging for CS majors to stick it out and finish the degree even if some of the classes they do not enjoy.
- Computer gaming concentration combining computer graphics and programming Votes: 9 - 6 - 4 - 2 Total: 21
- 19. Exploration and implementation of social networking and online identity and presence. This can be combined with a marketing approach to present towards market sectors and demographics with the effects of anonymity

Votes: 6 - 6 - 6 - 3 *Total*: 21

- 20. Software Quality Assurance is an important aspect of development in the workplace, yet gets no attention in college. ISO 9000 series, CMMI, SPICE. Process is as important as product *Votes*: 10 6 5 *Total*: 21
 - Comments
 - This is a very critical piece of CS education that is completely absent from the curriculum, yet shows up daily in software development in the real world.
- 21. Provide programming competitions*Votes*: 8 6 2 *Total*: 16
- 22. Alternatives high-level math: Require Calculus I (whether MATH 111 or 109 AND 110), and then give options for the remainder (e.g. two of the following: Statistics for CS, Advanced algebra, or Calculus II)
 Votes: 10 5 Total: 15
- 23. Have a clean, understandable, and modern website with an intuitive layout
 Votes: 8 3 3 1 *Total*: 15
- 24. Work with using and designing IS in the real world: ERP (SAP or Oracle),
 CRM (Siebel), and knowledge management
 Votes: 5 4 2 2 1 Total: 14

Comments

- Working with real world applications is always a great way to gain real world experience and a look into what we could potentially be doing at our first jobs
- 25. An Accredited program

Votes: 6 - 6 - 1 *Total*: 13

26. Options in course selection

Votes: 6 - 5 *Total*: 11

- 27. Provide lectures and conferences for prospective students*Votes*: 5 4 2 *Total*: 11
- 28. Recognition amongst the relevant community*Votes*: 5 5 1 *Total*: 11
- 29. Integration of faith into the program*Votes*: 9 1 *Total*: 10
- 30. Shadowing a CS student day, or high school sit in days (especially for labs)
 Votes: 5 4 1 Total: 10
- 31. Provide the expected length to completion (i.e. in general 4 years, but could be done in 3 and a half) *Votes*: 5 5 *Total*: 10
- 32. Logical thinking courses, how to think

Votes: 5 - 4 Total: 9 Comments

- This is very well integrated in the Digital Electronics engineering course
 - an excellent course to include in the CS curriculum
- 33. Explain difference between Computer Science knowledge and "computer nerd" knowledge, emphasizing how you need not be good with a computer to study computer science by emphasizing the math, logic, and problem solving aspects *Votes*: 5 3 1 *Total*: 9

34. Showcase student projects, internships and research

Votes: 8 - 1 Total: 9

- 35. Identify what students will be learning*Votes*: 5 3 *Total*: 8
- 36. Indicate the goal of the major

Votes: 6 - 2 *Total*: 8

- 37. Presenting various job opportunities and best to apply my talents to a future profession *Votes*: 7 *Total*: 7
- 38. Display each course focus (i.e. this course focuses on hardware and this course focuses on software) *Votes*: 7 *Total*: 7
 -
- 39. Provide an overview of the major*Votes*: 6 *Total*: 6
- 40. An over-arching project for the whole major*Votes*: 5 *Total*: 5
- 41. Faculty bios with interests highlighting their accessibility and help Votes: 5 Total: 5
- 42. Provide a list and description of required classes as well as a list and description of optional classes *Votes*: 5 *Total*: 5

4.9 Impact of the Delphi Study

Since the participants of the Delphi Study were students currently in a computing major, most of their input directly affected the Student-Focused Curriculum. The ideas that were generated from the Delphi Study were ranked in the order of importance by the students through their voting on them. The ideas generated with a score of twentyor more were used as much as possible in the development of the Student-Focused Curriculum. Section 4.8.3 provides the details for each idea as well as the voting record and scoring.

• Concentrations (Item 1)

Much like the Job-Focused curriculum, concentrations were identified as being attractive as well as informative. As one student put it, "Computer Science is too broad of a topic: this would be very useful in classifying the direction of study." Therefore, concentrations were used in the Student-Focused Curriculum. Some of the concentrations were suggested during the Delphi Study. However, these suggestions were made by a few individuals. Therefore, to determine the concentrations to be used, a poll was developed for the same group of students to identify the concentrations they believe are the most attractive. The poll was opened and students, via email, were invited to participate. In the first round they had the opportunity to vote for the concentrations they thought were the most important as well as add any concentration that might also be a candidate. During the second round, students were once again invited via email to participate and were asked to choose their top three choices of concentrations and the results are shown in Figure 4.12. The concentrations that had ten or more votes were used in the Student-Focused Curriculum. The only modification to the polled data was

the combination of Security and Forensics into a single concentration. This was decided in order to reduce the size of the curriculum that students taking the survey would have to evaluate.

Previous Poll	
Top 10 Appealing Concentrations	
Security	25
Artificial Intelligence	22
Forensic Computing	15
Networking	15
Game Development	12
Software Engineering	11
Media and Web Development	10
Computer Science	5
Programming Languages & Logics	5
Database and Data Mining	4

Figure 4.12: The Results of the Concentrations Poll

• Developing Real-World Applications (Item 2)

The phrase "real-world" was used as often as possible where appropriate. For example in the concentrations definition section it was used in the Software-Engineering concentration. It was also used in the following course descriptions: Discrete Mathematics, Database Applications, Senior Capstone, Computer Forensics, Cryptography, Introduction to Artificial Intelligence, Knowledge-Based Software Engineering, Converged Networks, Object-Oriented Modeling, and Webmasters and Servers.

• Practice Opportunities (Item 3 and Item 14) - Service learning courses, special semester projects, internships, and study abroad This was used in the introductory paragraph in the sentence, "To prepare for this exciting field, students are encouraged to participate in internships; placement aid is provided."

• Web Site Languages Course (Item 4) Since Web and Media Development was designated a concentration, this ideas was incorporated into the courses for the major. The original idea identified

specific scripting languages, but it was decided that using the phrase "scripting languages" would be more timeless than using specific languages that would change over time. The idea was used in the Principles of Web Site Design, Webmasters and Servers, and Intermediate Web Design.

• Opportunities to Use the Major Outside of Class (Item 5)

This idea was incorporated into some of the concentration descriptions. For example, student-run clubs were identified in the Artificial Intelligence and Game Development concentrations, namely the robotics club and the gaming club. A Web Development organization was identified in the Web and Media Development concentration that "provides web solutions to many non-profit organizations."

• Larger variety of programming language courses (Item 6)

Courses in Web and Media Development as well as courses in the Core show a breadth of programming languages that students would learn as tools to broaden their abilities.

• Use of Multiple Operating Systems (Item 7)

Where appropriate different operating systems were identified in course descriptions. In courses such as Computer and Network Security and Operating Systems Linux, Macintosh and Windows were identified.

• Links to "Real-World" Applications for Each Area or Concentration (Item 8 and 17)

In each concentration description, a section was added that identified the jobs on which recent graduates are currently working. An attempt to identify specific projects for the recent graduates was also made in order to provide prospective students with an understanding of where this concentration could be used in the real-world.

- A Bachelor of Science degree instead of a Bachelor of Arts (Item 9) Though this is more a reflection of the students at Messiah College, it was integrated into the introductory paragraph, "Students seeking a Bachelor of Science degree...".
- More Variety of Choice Options (Item 10 and 26) With the number of concentrations and the different courses provided throughout the curriculum, it was decided that this idea could easily be accomplished by simply having an Electives section for each concentration where students would choose three other courses from any other concentration. The statement reads, "Students may choose 3 other courses from any concentration to round out their degree."
- Software Engineering Concentration (Item 11)

Incorporated into the choice of concentrations.

• Express the Idea that not all Computer Related Majors are Programming Intensive (Item 12)

It was decided that through the recent graduates work section and the different concentrations, the stereotype that a computing major is programming intensive would be dispelled.

• Course Combining Hardware And Software (Item 13)

This idea was not incorporated into the Student-Focused Curriculum since it was determined that it didn't fit within the concentrations that were listed. This idea would function well in a Computer Engineering major more so than a Computer Science major.

• Provide an Introductory Course Providing an Overview of all Concentrations (Item 15)

This was implemented in the course, "Introduction to Computer Science" where the course description states, "Students are introduced to the various aspects of Computer Science through a general survey course of technology meccas, the history of various aspects of development in Computer Science, ethical practices in the field and emerging technologies."

• Provide Courses in Information Management (Item 16)

It was decided that this idea belongs more in an Information Systems or Business Information Systems major than this Computer Science major and therefore would not be incorporated into this Student-Focused Curriculum. This is an idea that challenges the basic makeup of the Computer Science major, and since this Student-Focused Curriculum is based on the underlying curriculum found in the Typical Curriculum, it would not be included.

• Computer Gaming Concentration (Item 18)

Incorporated into the choice of concentrations.

• Exploration and Implementation of Social Networking and Online Identity and Presence (Item 19)

Like Item 16, this idea presents a challenge to the underlying makeup of the Computer Science major and therefore was not included in the Student-Focused Curriculum.

• Software Quality Assurance (Item 20)

Quality assurance is addressed in both the description of the Software Engineering concentration as well as within courses in the Software Engineering concentration.

Though the focus was on the ideas with a total score over twenty, some of the ideas scoring lower than twentywere easily incorporated into the Student-Focused

Curriculum.

• An Accredited Program (Item 25)

This was easily incorporated into the introductory paragraph with the phrase, "accredited by ABET".

• Identify What Students will be Learning (Item 35)

This was incorporated into the curriculum through the attempt to make all descriptions understandable and motivating.

• Presenting Various Job Opportunities (Item 37)

This was also incorporated into the recent graduates job section in the concentration descriptions.

4.10 Student-Focused Curriculum Design

The Student-Focused curriculum was designed using the requirements of the Typical Curriculum and information gathered from the research segments within the Student Ideas of Computer Science stage, HS Student Technology Survey, HS Student Focus Groups, and College Student Delphi Study. The Introduction section to the Student-Focused Computer Science Curriculum was divided into three parts. The first part of the introduction is two paragraphs describing the major. The second part of the introduction presents the major's concentrations.

The first introductory paragraph describes the field as growing rapidly with dramatic effects on society. It also indicates the project growth of the job market and how students are encouraged to prepare for this exciting field. The second introductory paragraph an overview of the major. The wording within these introductory paragraphs was deliberately chosen based on information from the

Bureau of Labor Statistics and the Delphi study conducted in one of the segments of this stage of research. Specifically, the phrase, "highest projected job growth in the United States," was developed from the Bureau of Labor Statistics study. The phrase, "students are encouraged to participate in internships," comes from the results of the Delphi study as well as the phrases, "Bachelor of Science", and "accredited by ABET". Figure 4.13 shows the introduction to the Student-Focused Curriculum.

Computer Science Major

Over the last decade, rapid advances in technology, specifically digital technology, have led to dramatic changes in society and in the global economy. Computer and technology related fields claim some of the highest projected job growth in the United States! To prepare for this exciting field, students are encouraged to participate in internships; placement aid is provided.

Students are prepared for lifelong learning in this rapidly evolving discipline. Students seeking a Bachelor of Science degree in Computer Science will find a lot of flexibility in tailoring their college education. Because the computing and technology fields are so diverse, this program, accredited by ABET, allows students to focus on a chosen concentration.

Figure 4.13: Student-Focused Curriculum Introduction

The idea of using concentrations in the major was the highest ranked idea in the Delphi study. Some of the concentrations were suggestions made in the Delphi study, the others were the top choices in an informal survey of college students. The concentrations listed include Security and Forensic Computing, Artificial Intelligence, Networking, Game Development, Software Engineering, Web and Media Development and a Build-Your Own concentration. Included with the introduction of each concentration was a paragraph describing the concentration using language that students may hear on television. After the introduction paragraph of the concentration, two examples of recent graduate student employment are presented. The idea of presenting the jobs in which recent graduates are currently involved was introduced in the Delphi study. Figure 4.14 shows the introduction to the concentrations of the Student-Focused Curriculum.

After the introduction, the core required courses are presented. These courses were chosen from the Typical Curriculum but were given descriptions aimed at high

Concentrations

Security and Forensic Computing

Technologically competent criminals exploit new technologies to commit crime. Specialists are needed to thwart criminals by developing secure environments as well as examining digital evidence when a crime has occurred. Recent graduates are currently working as:

- Quality Assurance Project Manager at a large Online News Firm
- · Systems Administrator for a large Health Insurance Firm

Artificial Intelligence

Artificial intelligence is used in everything from the Spirit robot sent to mars to collect data to GPS units and cell phones. Specialists are needed to develop products that behave intelligently. The student-run robotics club provides opportunities to apply learning. Recent graduates are currently working as:

- System Engineer developing satellite intelligence for a contracting firm near Washington, DC
- Artificial Intelligence Specialist for a nonprofit scientific society based in California.

Networking

Networking and the Internet have increased the abilities of different technologies such as cars, cell phones and computers to communicate directly with each other. Specialists are needed to design, install, configure and maintain networks to allow devices to do so. Recent graduates are currently working as:

- IT Project Manager for a large networking firm in Kenya, Africa
- Systems and Network Engineer for a financial organization

Game Development

With the ever increasing power of computers and their graphics capabilities, game development has become a global industry. Specialists are needed to focus on all aspects of interactive video game design, developing games like those available for the PS3 and Xbox gaming consoles. The student-run gaming club provides opportunities to test game ideas. Recent graduates are currently working as:

- Flash Game Developer for an online media company
- Project Creative Director for a large gaming company.

Software Engineering

Software Engineers work in all aspects of society designing, implementing and modifying high quality software for many different types of applications. Specialists are needed to provide software solutions to real-world challenges in many settings from airliners to iPhones. Recent graduates are currently working as:

- · Solutions Architect for a worldwide contracting firm.
- · Director of Software Engineering for a global firm based in Minnesota

Web and Media Development

The Internet is used more and more as a vehicle for commerce and information. As the saying goes, "Knowledge is Power." Specialists are needed to develop dynamic, interactive web applications for a world dependent on the World Wide Web. The student-run Web Development organization provides web solutions to many non-profit organizations. Recent graduates are currently working as:

- · Mobile Application Development Research for a large, global non-profit organization
- · Web Designer and Developer for a local web development business

Build-Your Own

Sometimes students are not sure which direction to take. This program allows students to develop a concentration uniquely their own. With the help of their advisor, any student can tailor the Computer Science major to their needs and dreams.

Figure 4.14: Student-Focused Curriculum Concentrations Introduction

school students. Course numbers were intentionally left out of the Student-Focused

curriculum. Figure 4.15 shows the core required courses of the Student-Focused

Curriculum.

Core Required Courses

The following are the courses that all Computer Science majors engage in regardless of their chosen concentration.

Calculus I

Calculus I takes the processes of finding the slope of a line and the area in a closed region and considers them as infinite processes. Students study of how things change and how to model systems in which there is change.

Discrete Mathematics

Computers deal with discrete objects, those things which can be separated from each other. Students learn the fundamentals of discrete mathematics which can be applied to real-world problems from the placement of cell-phone towers so they won't interfere with each other to the orbits of satellites.

Introduction to Computer Science

Students are introduced to the various aspects of Computer Science through a general survey course of technology "meccas", the history of various aspects of development in Computer Science, ethical practices in the field and emerging technologies.

Programming I

Students become familiar with basic programming structures such as loops, conditional statements, variables and methods through weekly lab assignments in the Java programming language.

Database Concepts

Students explore the fundamental concepts involved in building and maintaining a database using the MySQL and Oracle database management systems, CSS and PHP programming languages. In cooperation with the Intermediate Web Design course, students create a dynamic, database-driven web site.

Database Applications

Students apply what they have learned in Database Concepts to develop a solution to a real-world need expressed by a non-profit organization. Emphasis is placed on communication and cooperation between multiple teams to design, create, implement and maintain a large-scale application.

Information Systems

Students explore how information technology is used to support the decision-making process in businesses.

Senior Capstone

This two-semester course provides a finale to each student's academic career. While preparing for life after college through various professional preparatory activities, students utilize their cumulative knowledge to develop a final project in their chosen concentration. Students are encouraged to seek current needs in the business and non-profit communities for real-world opportunities.

Figure 4.15: Student-Focused Curriculum Core Required Courses

Following the core required courses are the required courses for each concentration.

These courses were chosen from colleges and universities that offer majors in these

specific concentration areas. Once again the course numbers were intentionally

omitted and descriptions were given that were geared toward high school students.

Figure 4.16 shows one of the concentration areas in the Student-Focused

Curriculum. For the full Student-Focused Curriculum, see Appendix H.

Concentration Required Courses

Security and Forensic Computing

The following courses are required for the Security Concentration.

Networking

Students learn the basics of networking and the Internet and how to establish communications between servers as well as the various techniques necessary to create lines of communication between other technological devices.

Computer and Network Security

Students examine computer systems to determine vulnerabilities then practice hacking into those systems. Students then learn how to build defenses to prevent those attacks. Students are exposed to exploits of different operating systems with an emphasis on Windows, Linux and Macintosh.

Operating Systems

Students learn the internal structure and manipulation of the Linux, Macintosh, and Windows operating systems with a focus on protection and security.

Computer Forensics

Students learn how to preserve, identify, extract and document digital evidence in various forms. Current opportunities from local law enforcement agencies allow students to experience real-world forensics.

Cryptography

Students learn how two people can exchange a message in such a way that no one else can understand it, or cause problems with it. A real-world example is online banking which uses cryptography to ensure online transactions are conducted privately by the authorized person.

Advanced Network Security

Students develop advanced skills in identifying network security vulnerabilities, conducting risk assessments, preventing, detecting and responding to intrusions and providing for business continuity and disaster recovery. Local businesses provide opportunities for students to use their developing skills to assess security vulnerabilities and risks.

Biometrics

Students study the use of biological identifiers such as finger prints and the eye's iris in security applications. Lab projects reinforce topics learned.

Electives

Students may choose 3 other courses from any concentration to round out their degree.

Figure 4.16: Student-Focused Curriculum Core Required Courses

Chapter 5

Student Perceptions and Reactions to Computer Science Curricula

In Chapter 2, a Typical Curriculum was developed by evaluating College and University curricula found on the World Wide Web. The full Typical Curriculum is shown in Table 2.15.

In Chapter 3, a Job-Focused Curriculum was developed by evaluating how businesses promote computer related job opportunities. Categories and keywords extracted from job advertisements were used to develop concentrations and areas of study in the new presentation of a Computer Science major. Areas of study were used in place of specific courses. The full Job-Focused Curriculum is shown in Figure 3.4.

In Chapter 4, a Student-Focused Curriculum was developed through three separate research tools, a High School Student Technology Survey, High School Student Focus Groups, and a College Student Delphi Study. Through the data gathered, a new presentation of the Computer Science major was designed with concentrations and descriptions identified by students as being interesting and explanatory.

The goal of the final stage of research, Survey of Prospective Students, as presented in Figure 1.4 and detailed in Figure 5.1 was to assess the reaction of high school

students to the different presentations of the Computer Science curriculum. The purpose in conducting these surveys was to test the hypothesis, "When presented with a more relevant Computer Science curriculum than a typical curriculum today, students will be encouraged and motivated to enroll in the major."

The results from the first three stages of research provided data necessary to develop the curricula to be used in the Curriculum Presentation Surveys. The first stage, Curricular Presentations, provided the data necessary to develop the Typical Curriculum. The second stage, Technology Job Review, provided the data necessary to develop the Job-Focused Curriculum. The last stage, comprised of the three research segments, the High School Student Technology Survey, the High School Student Focus Groups, and the College Student Delphi Study, provided the data to develop the Student-Focused Curriculum.

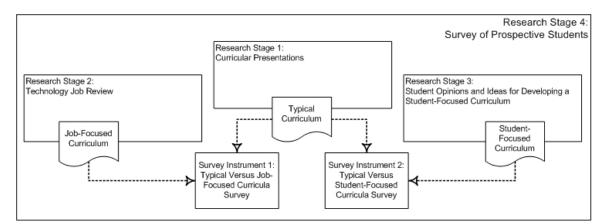


Figure 5.1: Research Stage 4: Survey of Prospective Students

5.1 Overview of the Curricular Presentation Surveys

Two survey instruments were developed to present curricula to high school students and ask for their reaction. Each survey instrument contained a pair of surveys with each of the pairs dedicated to a specific curriculum. These instruments were developed using the Qualtrics.com software, which is "an industry-leading provider

of enterprise feedback management and survey software solutions [93]." Each survey pair within a survey instrument had sections that were common to the pair such as the Introduction, Technology, and Demographic and Closure sections. The sections that differ addressed the particular curriculum presentation, Typical Curriculum, Job-Focused Curriculum, and Student-Focused Curriculum. When participants started a survey instrument, they would be presented with only one of the survey pairs which contained only one of the curricula. Therefore, practically speaking, each survey instrument was responsible for administering two surveys. Each survey instrument was administered at different times to different populations. Therefore, no participant took more than a single survey. Figure 5.2 shows the two survey instruments and the sections in each.

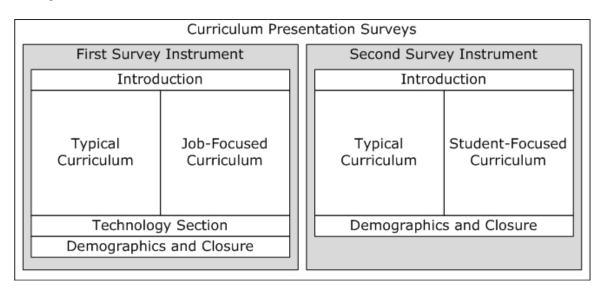


Figure 5.2: Curriculum Presentation Survey Instruments

5.1.1 The First Survey Instrument

The first survey instrument was designed to compare student reaction to the Typical Curriculum and the Job-Focused Curriculum. It contained five blocks, the Introduction block, the Typical Curriculum block, the Job-Focused Curriculum block, the Technology block, and the Demographic and Closure block. The

individual curricular surveys shared the Introduction, Technology, and Demographics and Closure blocks.

Figure 5.3 shows the survey flow graphically. The Introduction block introduced the students to the survey as a whole. After the Introduction block, the Qualtrics.com software randomly chose either the Typical Curriculum block or the Job-Focused Curriculum block for each participant so that each participant evaluated only one of the curricula. No participant evaluated both. After a participant completed the curriculum block provided, the Technology and Demographic blocks would be presented. After the completion of the Technology and Demographic blocks, the survey was completed.

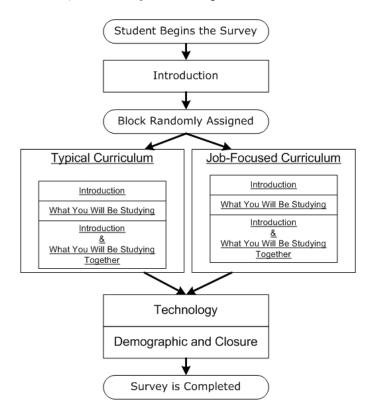


Figure 5.3: Survey Flow for the first survey instrument

Introduction Block

The Introduction block, shared by both surveys, thanks the students for

participating and provides instructions. The first question, presented on the same

screen, reads, "Before we start the survey, please rate your interest in studying Computer Science." The purpose of this question is to establish the participant's initial interest in studying computer science. A similar question is posed at the end of the survey for comparison purposes. Figure 5.4 presents the introduction screen that students saw.

Qualtrics.com [*]
Dear Student:
Thank you for taking the time to work through this survey and for your honest opinions! Your opinions my shape the way colleges present their Computer Science major to be more relevant.
This survey will take approximately 15 minutes. We want to know your opinions about how colleges display their Computer Science major on their websites. This survey begins with an Introduction to the major followed by What You Will Be Studying. Look at each section and answer the questions. Please take your time to give me your <u>honest opinion</u> about what you see.
Thank you!
Sincerely, D. Scott Weaver Principal Investigator
Before we start the survey, please rate your interest in studying Computer Science.
It has never crossed my mind I am not interested I might consider it I am a little interested I am extremely interested O O O O O
0%
»

Figure 5.4: Introduction Block of the First Survey Instrument

Curricular Blocks

The two curricular blocks, similarly designed, are broken into three subsections to allow the students to evaluate different parts of the curriculum. The first subsection presents the "Introduction" to the curriculum and asks questions about it. The second subsection, "What You Will Be Studying", presents the required courses or areas of study and asks related questions. The last subsection puts the curriculum subsections together and asks questions relevant to the curriculum as a whole. Since many of the questions in the Typical Curriculum and Job-Focused Curriculum blocks are similar, they will be explained together.

$The \ ``Introduction'' \ subsection$

The student is presented with the introduction to the specific curriculum followed by two questions (See Figures 5.4 and 5.6).

- After looking at the Introduction above, how well do you think you understand what this major is about?
- After looking at the Introduction above, how well do you think you understand what jobs you could apply for after graduation?

Qualtrics.com.		
First Section: Introductio	n	
Curr	iculum Introduction was displayed	here
After looking at the Introduction abo	ove, how well do you think you unde	rstand what this major is about?
I don't understand it at all	I understand it a little bit	It is extremely clear
O	O	O
After looking at the Introduction abo for after graduation?	ove, how well do you think you unde	rstand <mark>what jobs you could apply</mark>
I have no idea	I have a general idea	I know exactly what jobs I could get
O	O	O
	0%	
>>		

Figure 5.5: Introduction of the Typical Curriculum in the First Survey Instrument

	Curriculum Introduction was display	ad bara
	Curriculum initioduction was display	
After looking at the Introduction	above, how well do you think you und	lerstand what this major is about?
I don't understand it at all	I understand it a little bit	It is extremely clear
O	O	\odot
The second second second	I have a general idea	I know exactly what jobs I could get
l have no idea ©	©	©
Ô		0
Ô	0	0
O Which concentrations look intere	Sting to you (check all that apply or No	© one of the Above)?

Figure 5.6: Introduction of the Job-Focused Curriculum in the First Survey Instrument

The purpose of the first question is to determine if the introduction provides enough information to help prospective students understand what the major is about. The purpose of the second question is to determine if the introduction provides enough information to help prospective students understand the jobs they could apply for after graduation.

In the "Introduction" subsection of the Job-Focused Curriculum two additional questions are posed (See Figure 5.6).

- Which concentrations look interesting to you (check all that apply or None of the Above)?
- Put the concentrations you chose in the order of interest to you with the most interesting at the top.

The purpose of the first additional question is to determine which concentrations interest students. If the participant chose more than one concentration, the second additional question, displayed on another page, was posed to provide ranking information for those concentrations chosen (See Figure 5.7).

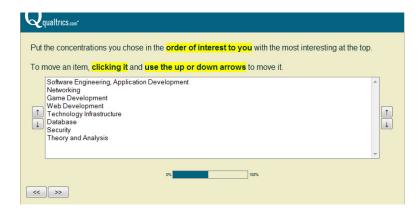


Figure 5.7: Arranging concentrations in the Job-Focused Curriculum in the First Survey Instrument

The "What You Will Be Studying" subsection

In the "What You Will Be Studying" subsection, the student is presented with the required courses for the Computer Science curriculum. For the Typical Curriculum the required course list is presented (See Figure 5.8). For the Job-Focused Curriculum, areas of study are presented (See Figure 5.9). The following questions are common to both curricular surveys.

- After looking at What You Will Be Studying above, how well do you think you understand what you will be studying?
- How important is knowing the exact courses and course names you will be taking?
- How important is it to you to know the required course list?

	You Will Be Studying	
Curriculum	What You Will Be Studying was disp	played here
fter looking at What You Will E tudying?	se Studying above, how well do you	think you understand what you will t
I don't understand at all	I understand a little bit	It is extremely clear
O	\odot	\odot
/hich courses look interesting (o	check all that apply)?	
Introduction to Computer Science	System Programming Concepts	Database Concepts
Programming I	Computer Hardware	Computer Graphics
Programming II	Programming Languages	Software Engineering
Data Structures	Computer Architecture	📃 Data Comm. & Networking
Algorithms and Complexity	Operating Systems	Artificial Intelligence
Computer Org. & Assembly Lang.	Computer Science Capstone	Compiler Design
	act courses and course names y	
It is not important	It is a little bit important	It is extremely important
Ŭ		
ow important is it to you to knov	v the required course list?	
It is not important	It is a little bit important	It is extremely important
Ô	O	0

Figure 5.8: The "What You Will Be Studying" Section of the Typical Curriculum in the First Survey Instrument

/hat you will be
ely clear
/ important
mportant

Figure 5.9: The "What You Will Be Studying" Section of the Job-Focused Curriculum in the First Survey Instrument

The purpose of the first question is to determine if what is presented for study aids the prospective student in understanding what is studied in the major. The purpose of the second question is to determine if exact courses and course names are important. The purpose of the third question is to determine if a required course list is important.

The "What You Will Be Studying" subsection of the Typical Curriculum has an additional question which is posed to determine which typical courses are still interesting to students (See Figure 5.8).

• Which courses look interesting (check all that apply)?

Both Subsection Together

الألم للاستشارات

Both the "Introduction" and "What You Will Be Studying" subsections were then presented together (See Figures 5.10 and 5.11). The following question was then posed:

• Above are both sections you've been shown before. Put the following items in

×	qualtrics.com
Bo	oth Sections Together
	Curriculum Introduction and What You Will Be Studying were displayed here
	ove are both sections you've been shown before. Put the following items in the <mark>order you think is portant</mark> with the most important at the top. The items are listed as they appear above.
0	move an item, clicking it and use the up or down arrows to move it.
↑ ↓	Introduction (The first 3 paragraphs) Course Number (The 1st column. Examples: CS 101, CS 110) Course Name (The 2nd column. Example: Introduction to Computer Science) Course Credits (The 3rd column. Example: 3)
	nat do you like <mark>the most</mark> about what you've been shown (the Introduction and What You Will Be adying)?
	nat do you like <mark>the least</mark> about what you've been shown (the Introduction and What You Will Be udying)?
Vh	nat could be added that would help you understand the major better?
<<	0%

Figure 5.10: Both the Introduction and the "What You Will Be Studying" Sections of the Typical Curriculum in the First Survey Instrument

Curri	ulum Introduction and What You Will Be Studying were displayed here	
nportant with the	tions you've been shown before. Put the following items in the order you most important at the top. The items are listed as they appear above.	think is
o move an item,	licking it and use the up or down arrows to move it.	
Concentration A The Job Possit The Introduction The General Ar	(The first paragraph) eas (Listed in both areas - i.e. Web Development, Game Development) lities (In the 1st rectangle under each Concentration Area - i.e. Web Designer) to the Areas of Study as of Study (In the 3-column list in the 2nd rectangle) eas of Study (In the 2nd rectangle under each Concentration) oncentrations	
		-
		-
· · · · · · · · · · · · · · · · · · ·	<mark>e most</mark> about what you've been shown (the Introduction and What You	• Will Be
· · · · · · · · · · · · · · · · · · ·	<mark>e most</mark> about what you've been shown (the Introduction and What You	will Be
tudying)? /hat do you like t	<mark>e most</mark> about what you've been shown (the Introduction and What You e least about what you've been shown (the Introduction and What You	
tudying)? 'hat do you like t		
tudying)?		

Figure 5.11: Both the Introduction and the "What You Will Be Studying" Sections of the Job-Focused Curriculum in the First Survey Instrument

the order you think is important with the most important at the top. The items are listed as they appear above.

The lists for this question differ between the Typical Curriculum and Job-Focused Curriculum. The question is designed as an ordering question where students select an entry and position it higher or lower in the list. The purpose of the question is to determine the importance of each segment of the curriculum in the minds of the students.

The questions that follow are open-ended questions to determine the positive aspects of what they have seen as well as what could be improved upon. The last open-ended question is designed to determine what is missing that would help students understand the major better.

- What do you like the most about what you've been shown (the Introduction and What You Will Be Studying)?
- What do you like the least about what you've been shown (the Introduction and What You Will Be Studying)?
- What could be added that would help you understand the major better?

After students evaluate both sections together, they are presented with a page that asks them to reflect once again on their interest in studying Computer Science. These questions are presented prior to the Technology and Demographic blocks and revisit the interest question posed at the beginning of the survey and attempts to ascertain the reason a student may have changed their opinion (See Figures 5.12 and 5.13).

- After reading the Introduction and What You Will Be Studying, revisit your interest in studying Computer Science.
- If your opinion has changed, what changed it?

Qualtrics.com				
After reading t Computer Sci		What You Will Be Stu	dying , revisit your inte	erest in studying
It has never cros mind	sed my I am not intere		it I am a little interest	ed I am extremely interested
O	O	O		Ø
If your opinion	has changed, what ch	nanged it?		
The Introduction	on	🔲 The	variety of courses	
🔲 Knowing the e	exact requirements	🔲 Othe	er	
The names of	the courses	🔲 My o	pinion hasn't changed	
		0%	100%	

Figure 5.12: Students reflect on their interest in Studying Computer Science for the Typical Curriculum in the First Survey Instrument

Qualtrics.com*				
After reading the Intro Computer Science.	duction and What Y	′ou Will Be Studyir	ıg, revisit your interes	t in studying
It has never crossed my mind	I am not interested	I might consider it	I am a little interested	I am extremely interested
If your opinion has cha	nged, what changed	it?		
The Introduction		📄 The Areas	s of Study	
The Concentrations		C Other		
🔲 The Number of Possible	Concentrations	🔝 My Opinio	n Hasn't Changed	
🔲 The Job Possibilities				
	0%		100%	
<< >>				

Figure 5.13: Students reflect on their interest in Studying Computer Science for the Job-Focused Curriculum in the First Survey Instrument

The second question, "If your opinion has changed, what changed it?" provides a list of areas of the curriculum that may have affected the student's interest. The lists between the Typical Curriculum and Job-Focused Curriculum differ since they relate to the specific curricula.

Technology Block

The technology block provides questions similar to those found on the High School Student Technology survey.

Qualtrics.com [*]		
What classes in technology have ye	ou taken? (check all that apply)	
Graphics	Computer Applications (Word, Excel)	Hardware
Programming	Digital Photography	🔲 Web Design
Network Certification	Video or Audio Editing	Databases
What math classes have you taken	?	
🔲 Algebra	Calculus	Geometry
Trigonometry	Statistics	
What software tools do you use	? (check all that apply)	
Word Processing	🔲 Database	🔲 Geometer
Spreadsheets	Presentation (i.e. Power Point)	🔲 Minitab
What service-oriented applications	do you use? (check all that apply)	
🗐 Email	Social Networking (i.e. Facebook)	Music Downloads (i.e. iTunes)
Internet Browsing	Search Engines (i.e. Google)	On-line Radio
Instant Messaging	Movies On-line	On-line Photo Management (i.e. Flickr)
<< >>>	0%	

Figure 5.14: Technology Block in the First Survey Instrument

- What classes in technology have you taken (check all that apply)?
- What math classes have you taken?
- What software tools do you use (check all that apply)?
- What service-oriented applications do you use (check all that apply)?

Demographic Block

The demographic block provides information about each participant (See Figure 5.15). The last question is posed to determine the student's perceived level of engagement in the survey (See Figure 5.16).

• What is your gender?

Qualtrics.com.				
You are almost finishe demographic informa	ed. The fol tion only.	lowing question	ons will be use	d for
What is your gender?				
🔘 Male				
Female				
What is your age?				
-				
Where do you live?				
City				
State				
Zip				
Are you planning on going to col	lege?			
Yes			No	
O			O	
	0%	100%		
<< >>				

Figure 5.15: Technology Block in the First Survey Instrument

- What is your age?
- Where do you live (City, State, Zip)?
- Are you planning on going to college?
- In college, what would you like your major to be?
- How seriously did you take this survey?

5.1.2 The Second Survey Instrument

The second survey instrument was designed to compare student reaction to the Typical Curriculum and the Student-Focused Curriculum. It contained four blocks, the Introduction block, the Typical Curriculum block, the Student-Focused Curriculum block, and the Demographic and Closure block. The individual curricular surveys shared the Introduction, and Demographics and Closure blocks.

qualtrics.com						
In college, what v	vould you like	your major to	be?			
How seriously di	d vou take thi	s survev?				
1 - not at all	2	3	4 - somewhat	5		7 very serievel
1 - not at all	2	3 ()	seriously ©	5 ©	6 ()	7 - very seriously
Thank you so mu Sincerely, D. Scott Weaver Principal Investig	-	the time to wo	ork through this surve	ey!		
		0%		100%		

Figure 5.16: Technology Block in the First Survey Instrument

Figure 5.17 shows the survey flow graphically. The Introduction block introduced the students to the survey. After the introduction, the Qualtrics.com software randomly chose either the Typical Curriculum block or the Student-Focused Curriculum block for each participant so that each participant evaluated only one of the two curricula. No participant evaluated both. An option that the Qualtrics.com software offers is to balance the number of participants for each of the curricular blocks. This was chosen to keep the sample size close, a problem found in the first survey instrument. After a participant completed the Curriculum block provided, the Demographic and Closure block would be presented. After the completion of the Demographic and Closure block, the survey was completed.

Introduction Block

The Introduction block, shared by both surveys, thanks the students for participating, encourages honest opinions, indicates the approximate time the survey requires, and provided the assurance that the information given would be confidential (See Figure 5.18).

Curricular Blocks

These Curricular blocks are similar and are broken into two subsections to allow the

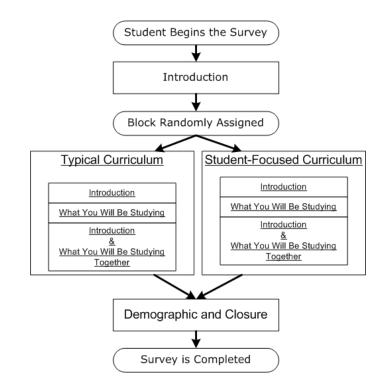


Figure 5.17: Survey Flow for the Second Survey Instrument

Qualtrics.com [*]
Dear Student:
Thank you for taking the time to work through this survey and for your honest opinions! Your opinions may shape the way colleges present and/or organize their Computer Science major.
This survey will take approximately 15 minutes. We want to know your opinions about how colleges display their Computer Science major on their websites. Please take your time to give me your <u>honest opinion</u> about what you see.
This is an anonymous survey. Your specific responses to questions are not traceable to you, nor will they be published except grouped together with all the other responses.
Thank you!
Sincerely, D. Scott Weaver Principal Investigator
0%100%
»

Figure 5.18: Introduction Block in the Second Survey Instrument

students to evaluate different parts of the curriculum. The first subsection presents the Introduction to the curriculum and asks questions about what the participant is seeing. The second subsection presents the required courses and asks related questions. Since many of the questions in the Typical Curriculum and Student-Focused Curriculum blocks are similar, they will be explained together.

Introduction subsection

The Introduction subsection begins with a description of what the participant can expect to see in the following survey pages. For the Typical Curriculum the description is as follows (See Figure 5.19):

"On the following pages you will be shown a traditional Computer Science curriculum, a curriculum that you may find on the web sites of many colleges and universities. The introduction to the Computer Science major is presented on the first page and is made up of three paragraphs."

"The required courses for the major will be presented on the page after the introduction."

"There is only 1 page for the introduction and 1 page for the required courses with instructions at the top of each of the pages. Remember, it is important to this survey that you are honest! Please tell me what you think, not what you think I want to know."

The Student-Focused description is as follows (See Figure 5.20):

"On the following pages you will be shown a Computer Science curriculum. The introduction to the Computer Science major is presented on the first page. The introduction starts with a description of

qualtrics.com*				
curriculum that you	i may find on t Computer Scie	shown a traditional C he web sites of many nce major is presente	colleges and un	iversities. The
The required course	es for the majo	r will be presented on	the page after t	he introduction.
with instructions at that you are honest	the top of each Please tell m	troduction and 1 p of the pages. Remen e what you think, not rate your interest	mber, it is impor what you think	rtant to this survey I want to know.
It has never crossed my mind	I am not interested	I might consider it	I am a little interested	I am extremely interested
©	0	0	O	0
	0%	10	00%	
>>				

Figure 5.19: The Introduction to the Typical Curriculum in the Second Survey Instrument

Computer Science followed by an overview of the available concentrations. Concentrations allow students to focus on a specific area in Computer Science."

"The required courses for the major and concentrations will be presented on the page after the introduction. At the top of the page is the list of required courses for all concentrations. The concentrations and the required courses for each follow."

"There is only 1 page for the introduction and 1 page for the required courses with instructions at the top of each of the pages. Remember, it is important to this survey that you are honest! Please tell me what you think, not what you think I want to know."

After the descriptions, the student is presented the initial interest question, "Before we start the survey, please rate your interest in studying Computer Science." The purpose of this question is to establish the participant's initial interest in studying computer science. It is then compared to a similar question at the end of the survey.

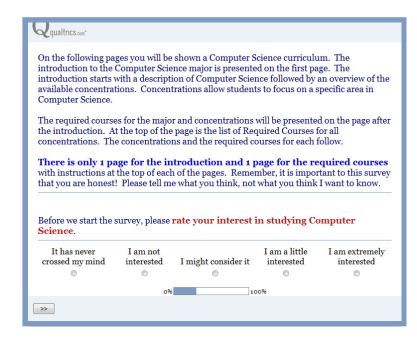
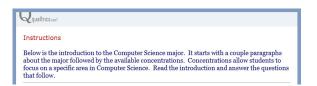



Figure 5.20: The Introduction to the Student-Focused Curriculum in the Second Survey Instrument

On the page after that initial question, the participant is provided with short instructions followed by the curricular introduction (See Figures 5.21 and 5.22). A section of statements is presented and the student is asked to indicate their level of agreement for each statement. The participant is provided with five levels of agreement based on the Likert scale, "Strongly Disagree", "Disagree", "Neither Agree nor Disagree", "Agree", and "Strongly Agree" (See Figures 5.23 and 5.24).

Qualtreson
Instructions
The following three paragraphs make up the introduction to the Computer Science major. Read the introduction and answer the questions that follow.

Figure 5.21: The Instructions for Evaluating the Typical Curriculum Introduction in the Second Survey Instrument

- Figure 5.22: The Instructions for Evaluating the Student-Focused Curriculum Introduction in the Second Survey Instrument
- After looking at the Introduction of the Computer Science Major above, indicate how much you agree or disagree with each statement.

- The Introduction clearly describes the Computer Science major.
- The Introduction gives me a clear picture of the breadth of Computer science.
- The Introduction makes the Computer Science major interesting to me.
- The Introduction motivates me to investigate more into Computer Science.
- The Introduction makes me confident about my future options after college.

Questions

After looking at the **Introduction** to the Computer Science Major above, indicate how much you **agree** or **disagree** with each statement.

	Strongly Disagree	Disagree	Neither Agree nor Disagree	Agree	Strongly Agree
The introduction clearly describes the Computer Science major.	©	O	0	O	O
The introduction gives me a clear picture of the breadth of Computer Science.	O	O	0	0	0
The introduction makes the Computer Science Major interesting to me.	©	©	0	O	O
The introduction motivates me to investigate more into Computer science.	©	O	0	O	O
The introduction makes me confident about my future options after college.	O	0	0	0	0

Figure 5.23: Rating the Typical Curriculum Introduction in the Second Survey Instrument

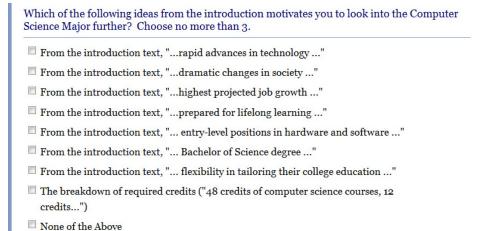
The purpose of the participant rating their agreement level to each statement is to determine the effectiveness of the introduction in motivating the participant to investigate the Computer Science major further. The following question attempts to

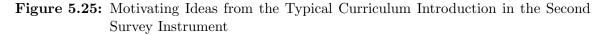
Questions

After looking at the **Introduction** and the **Concentration Descriptions** to the Computer Science Major above, indicate how much you **agree** or **disagree** with each statement.

	Strongly Disagree	Disagree	Neither Agree nor Disagree	Agree	Strongly Agree
The introduction clearly describes the Computer Science major.	©	Ô	0	0	Ô
The introduction gives me a clear picture of the breadth of Computer Science.	©	O	0	0	©
The introduction makes the Computer Science Major interesting to me.	©	O	0	0	©
The introduction motivates me to investigate more into Computer science.	©	O	0	O	©
The introduction makes me confident about my future options after college.	©	O	0	0	©

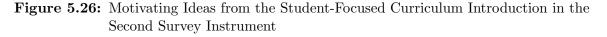
Figure 5.24: Rating the Student-Focused Curriculum Introduction in the Second Survey Instrument


identify what part of the introduction was motivating for the participant. Since the curricula are different, the list of options differs (See Figures 5.25 and 5.26).


• Which of the following ideas from the introduction motivates you to look into the Computer Science major further? Chose no more than 3.

Required Courses subsection

The Required Courses subsection provides brief instructions followed by the requirements for the curriculum being evaluated. For the Typical Curriculum the required course list is presented. For the Student-Focused Curriculum, the core required courses are presented followed by the required courses for each of the six concentrations. The following questions are common to both curricular surveys. The options differ when referring to required courses for the Typical Curriculum versus core requirement details for the Student-Focused Curriculum.



Which of the following ideas from the introduction motivates you to look into the Computer Science Major further? Choose no more than 3.

- From the introduction text, "...rapid advances in technology ..."
- From the introduction text, "...dramatic changes in society ..."
- $\hfill\square$ From the introduction text, "...highest projected job growth ..."
- From the introduction text, "...prepared for lifelong learning ..."
- From the introduction text, "... Bachelor of Science degree ..."
- The variety of Concentrations
- A Specific Concentration
- Concentration Descriptions
- Positions of Recent Graduates
- Build Your Own Concentration
- None of the Above

The first question asks the participant to rate their agreement level for each of five statements. Once again the participant is provided with five levels of agreement based on the Likert scale, "Strongly Disagree", "Disagree", "Neither Agree nor Disagree", "Agree", and "Strongly Agree" (See Figures 5.27 and 5.28).

• "After looking at the required courses above, indicate how much you agree or disagree with each statement."

The following are the statements in the Typical Curriculum survey (See Figure 5.27)

- The variety of courses appeals to me."
- The required courses give me a good understanding of what a Computer Science major studies.
- $\circ~$ The required courses motivate me to investigate more into this major.
- The required courses provide flexibility in a student's course of study.
- As a result of looking at the required courses, I am more apt to look into studying computer science in my college experience.

The following are the statements in the Student-Focused Curriculum survey (See Figure 5.28)

- The variety of courses and concentrations appeals to me."
- The core requirements and concentration details give me a good understanding of what a Computer Science major studies.
- The core requirements and concentration details motivate me to investigate more into this major.
- The core requirements and concentration details provide flexibility in a student's course of study.

Questions

After looking at the **required courses** above, indicate how much you **agree** or **disagree** with each statement.

	Strongly Disagree	Disagree	Neither Agree nor Disagree	Agree	Strongly Agree
The variety of courses appeals to me.	0	0	©	\odot	O
The required courses give me a good understanding of what a Computer Science major studies.	O	O	O	O	O
The required courses motivate me to investigate more into this major.	©	O	0	0	O
The required courses provide flexibility in a student's course of study.	©	Ô	©	©	©
As a result of looking at the required courses, I am more apt to look into studying computer science in my college experience.	0	O	O	O	0

Figure 5.27: Rating the Typical Curriculum Required Courses in the Second Survey Instrument

As a result of looking at the core requirements and concentration details,
 I am more apt to look into studying computer science in my college experience.

Questions

After looking at the **core requirements** and **concentration details** above, indicate how much you **agree** or **disagree** with each statement.

	Strongly Disagree	Disagree	Neither Agree nor Disagree	Agree	Strongly Agree
The variety of courses and concentrations appeals to me.	O	0	O	0	O
The core requirements and concentration details give me a good understanding of what a Computer Science major studies.	O	©	©	©	O
The core requirements and concentration details motivate me to investigate more into this major.	O	©	O	0	Ø
The core requirements and concentration details provide flexibility in a student's course of study.	0	O	Ø	©	Ø
As a result of looking at the core requirements and concentration details, I am more apt to look into studying computer science in my college experience.	O	O	٢	0	O

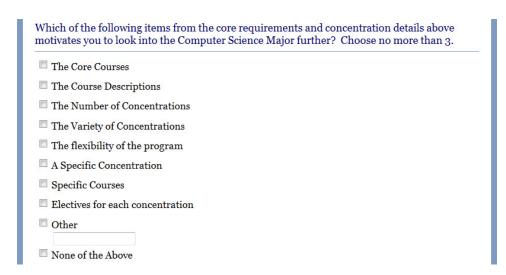
Figure 5.28: Rating the Student-Focused Curriculum Required Courses in the Second Survey Instrument

The next question attempts to identify the part of the required course list that was motivating for the participant. Since the curricula are different, the list of options differs (See Figures 5.29 and 5.30).

The Typical Curriculum survey asked: (See Figure 5.29)

• Which of the following items from the required course list above motivates you

to look into the Computer Science Major further? Choose no more than 3.



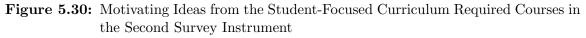

The Courses	
The Variety of Computer Courses	
The Mathematics Courses	
The sequencing of courses	
The number of courses required	
\square Seeing the whole sequence at once	
Other	

Figure 5.29: Motivating Ideas from the Typical Curriculum Required Courses in the Second Survey Instrument

The Student-Focused Curriculum survey asked: (See Figure 5.30)

• Which of the following items from the core requirements and concentration details above motivates you to look into the Computer Science Major further? Choose no more than 3.

The next page in the survey asks three questions related to the participant's interest prior to proceeding to the Demographic block. The first question revisits the

interest question posed at the beginning of the survey and asks the participant to revisit his/her interest in studying Computer Science. The second question provides a list of areas of the curriculum that may have affected the student's interest. The lists between the Typical Curriculum and Student-Focused Curriculum differ since they relate to the specific curricula (See Figures 5.31 and 5.32). The third question is an open-ended question designed to focus on the reason behind a participant's interest level remaining the same or dropping.

- After reviewing the curriculum that was presented, revisit your interest in studying Computer Science.
- If your interest level has increased, what motivated the increase? Check all that apply.
- If your interest level has remained the same or decreased, please try to articulate why. Remember, we want your honest opinion.

Demographic Block

The demographic block provides information about each participant. The last question is posed to determine the student's perceived level of engagement in the survey (See Figures 5.33 and 5.34).

- What is your gender?
- What is your age?
- Where do you live (City, State, Zip)?
- Are you planning on going to college?
- In college, what would you like your major to be?

Qualtrics.com [•]				
After reviewing the curriculum that was presented, revisit your interest in studying Computer Science.				
It has never crossed my mind ©	I am not interested ©	I might consider it ©	I am a little interested ©	I am extremely interested ©
If your interest leve	l has increased	l, what motivated the	increase? Chec	k all that apply.
The Introductory	paragraphs	Other		
🗆 The Required Cou	rses	🗆 My Inter	est Level Hasn't	Changed
The Mathematics				
If your interest leve Remember, we wan		the same or decrease	ed, please try to a	articulate why.
	0%	10	00%	
<< >>>				

Figure 5.31: Interest In the Typical Curriculum in the Second Survey Instrument

Qualtrics.com*		
Which concentration(s) motivates you to lo Check all that apply.	ok into the Computer Science major f	urther?
Security and Forensic Computing		
Artificial Intelligence		
Networking		
Game Development		
Software Engineering		
Web and Media Development		
Build Your Own		
After reviewing the curriculum that was pre- Computer Science.	sented, revisit your interest in studyin	g
It has never I am not	I am a little I am ext	
crossed my mind interested I might	consider it interested intere	
If your interest level has increased, what mo	otivated the increase? Check all that a	pply.
The Introductory paragraphs	The Course Offerings	
The Concentrations	The Flexibility	
The Number of Possible Concentrations	Other	
Future Opportunities Presented by Recent Graduates	🗖 My Interest Level Hasn't Changed	
If your interest level has remained the same Remember, we want your honest opinion.	e or decreased, please try to articulate v	why.
· · · · · · · · · · · · · · · · · · ·		
0%	100%	
<< >>		

Figure 5.32: Interest In the Student-Focused Curriculum in the Second Survey Instrument

- Have you looked at any college curriculum online?
- Has looking at the college curriculum online influenced you toward a major?
- What Advanced Placement courses have you taken or are currently taking? Check all that apply.
 - Biology
 - Calculus AB or BC
 - Chemistry
 - Computer Science
 - Physics B or C
 - Statistics
 - Other
- How seriously did you take this survey?

5.1.3 Selection of Participants

For the first survey instrument, the participants were invited to participate from several groups which include students from Mechanicsburg Area High School who participated in the focus groups, students from Mechanicsburg Area High School enrolled in Advanced Placement Computer Science, and high school students across the United States whose teachers participated in the Advanced Placement Computer Science reading in 2008. Invitations were sent out via email with the students who participated in the focus groups emailed directly. Teachers of other students were emailed with instructions on how their students could participate.

Qualtrics.com.			
You are almost finished. The following questions will not be used to attempt to identify you. the information will be used combined with all other responses.			
What is your gender?			
⊙ Male ⊙ Female			
What is your age?			
-			
Where do you live?			
City			
State			
Zip			
Are you planning on going to college?			
Yes	No		
۲	0		
0%	100%		
« »			

Figure 5.33: Interest In the Typical Curriculum in the Second Survey Instrument

The second survey instrument was conducted a year after the first survey instrument, and therefore, had different student populations. For the second survey instrument, participants were invited from similar groups including students from Mechanicsburg Area High School enrolled in Advanced Placement Computer science courses and Business Applications course, and high school students across the United States whose teachers participated in the Advanced Placement Computer Science reading in 2008. All participants were contacted through their teachers who were sent emails soliciting their help and providing instructions on how their students could participate in the surveys.

5.1.4 Privacy and Confidentiality

In soliciting help for the surveys, the teachers emailed had indicated a willingness to participate in the research in an informal survey passed around during the

Qualtrics.com.						
In college, what would you like your major to be?						
Have you looked	l at any col	lege curri	culum online?			
⊚ Yes			⊚ No			
Has looking at t	he college o	curricului	n online influence	ed you tow	ard a major	?
Yes	3		No		Haven't	Looked
0			0		C	
What Advanced apply.	Placement	courses	have you taken or	are curren	tly taking?	Check all that
Biology			Physics	s B or C		
Calculus AB or	BC		Statist	ics		
Chemistry			Other:			
Computer Scie	ence					
How seriously d	id you take	this surv	rey?			
			4 - somewhat	2.20		7 - very
1 - not at all ©	2	3	seriously	5 ©	6	seriously ©
Thank you so m Sincerely, D. Scott Weaver Principal Investi		ing the ti	me to work throug	gh this surv	vey!	
		0%		100%		
<< >>>						

Figure 5.34: Interest In the Student-Focused Curriculum in the Second Survey Instrument

Advanced Placement Computer Science reading in 2008. The Mechanicsburg Area High School teachers involved in the other research activities indicated they were willing to participate in the following surveys. In the first survey instrument, the individual students emailed had participated in a focus group and was informed that they would participate in a final survey, unless they chose not to. Therefore, the emails should not be viewed as an unauthorized intrusion that violates the individual's privacy.

The Qualtrics.com software administered the surveys and did not require any form of login, thus providing anonymity. The questions within the survey were designed to be answered without identifying information and therefore could not be used in any way to identify specific individuals. Therefore, the conducting of the surveys did not violate the participant's confidentiality.

5.1.5 Distribution, Response Management, and Administration

Email was the main tool in soliciting participants for the survey tools. The email for Advanced Placement teachers was sent to people in the researcher's contact list. Thirty teachers were contacted for both survey instruments. Each email contained a target deadline for the completion of the survey.

During the second survey instrument, the researcher received several replies indicating that the teacher's students could not participate in the survey until after the Advanced Placement exam, which fell after the proposed deadline, therefore, deadline was moved beyond the exam date.

Both survey instruments were piloted by two sets of Messiah College students. The first survey instrument was piloted by 15 students, the second by 6 students. The students were encouraged to focus on the ease of use and understandability of the surveys. The purpose of the pilot was to eliminate ambiguity, estimate the time required to take the survey, shorten the survey where necessary, rework troubled areas, and clarify questions posed throughout the survey. Revisions were made based on the feedback given.

5.1.7 Initial Release

The second survey instrument was initially released to the students at Mechanicsburg Area High School in the Advanced Placement Computer Science and Business Applications courses. The purpose for the initial release was to ensure that the survey was functioning properly, questions were understandable, and no unforeseen problems occurred. The feedback from the researcher's contacts ensured this was so. All other contacts were emailed two days later to participate in the surveys.

5.2 Results of the First Curricular Presentation Surveys

The complete survey can be found in Appendix I. The previous section described the procedures used to develop the surveys. The first survey instrument was developed to compare student reaction to a Typical Computer Science Curriculum versus a Job-Focused Curriculum and combined a survey for the Typical Computer Science Curriculum and a survey for the Job-Focused Curriculum. Sixty-nine students participated in this instrument. Thirty-three students took the Typical

Curriculum survey and twenty-nine finished it, nineteen took the Job-Focused survey and six finished it.

The target population for each survey instrument was high school students. The first survey was administered after many of the students had already left school for summer vacation; therefore, the sample sizes are small.

5.2.1 Typical Computer Science Curriculum Survey Responses

Initial Interest Question

The first question posed to participants prior to seeing any portion of the curriculum asks about their initial interest in studying Computer Science (See Table 5.1). The last question posed after the participants have evaluated the curriculum asked them to revisit their interest in studying Computer Science (See Table 5.11). The purpose is to determine if their interest level has changed based on the curriculum they have been evaluating. Below are the results of the first interest question.

Question 1: Before we start the survey, please rate your interest in studying Computer Science.

Level	Responses
It has never crossed my mind (1)	4
I am not interested (2)	15
I might consider it (3)	6
I am a little interested (4)	4
I am extremely interested (5)	4

Table 5.1: Typical Curriculum: Students' Initial Interest in Studying Computer Science

Curriculum Introduction The survey displays the introduction to the Typical Curriculum shown in Figure 1.5 followed by several questions asking the participant's opinions about the introduction.

Question 1: After looking at the Introduction above, how well do you think you understand what this major is about?

The majority of students, 67%, understand the major a little bit based on the Introduction (See Table 5.2). Ten students, 30%, indicate the Introduction makes understanding the major extremely clear.

Understand the Major	Responses
I don't understand it at all (1)	1
I understand it a little bit (2)	22
It is extremely clear (3)	10
Average based on choice values 1-3	2.273

 Table 5.2: Typical Curriculum: Responses to the Introduction Fostering Understanding about the Major

Question 2: After looking at the Introduction above, how well do you think you understand what jobs you could apply for after graduation?

The majority of the students, 73%, indicate they have a general idea of the jobs that could be applied for after graduation (See Table 5.3).

Understand Job Availability	Responses
I have no idea (1)	3
I have a general idea (2)	24
It is extremely clear (3)	6
Average based on choice values 1-3	2.090

 Table 5.3: Typical Curriculum: Responses to the Introduction Fostering Understanding about Jobs

What You Will Be Studying

Following the Introduction, the survey displays the "What You Will Be Studying"

section (See Figure 1.6) and asks participants questions relating to what they have

been presented.

Question 1: After looking at What You Will Be Studying above, how well do you think you understand what you will be studying?

About 48% of the students have a little understanding of what they will be studying after looking at the "What You Will Be Studying" section, whereas 52% indicate it is extremely clear (See Table 5.4).

Understanding What Will Be Studied	Responses
I don't understand at all (1)	0
I understand a little bit (2)	16
It is extremely clear (3)	17
Average based on choice values 1-3	2.515

 Table 5.4: Typical Curriculum: Responses to What You Will Be Studying Fostering Understanding in What is Studied

Question 2: Which courses look interesting (check all that apply)?

The courses that over half of the students indicate look interesting include Computer Graphics, 74%, Artificial Intelligence, 71%, and Computer Architecture, 50% (See Table 5.5). However, the question does not address what the students think the courses are about.

Question 3: How important is knowing the exact courses and course names you will be taking?

The majority of the students, 70%, indicate that it is extremely important to know the exact courses and course names in what they will be studying (See Table 5.6).

Question 4: How important is it to you to know the required course list?

Most of the students, 82%, responded that it is extremely important to know the required courses for your major (See Table 5.7). Only 18% replied that it was only a little bit important. No one indicated it had no importance.

Courses	Response	%
Computer Graphics (14)	25	74%
Artificial Intelligence (17)	24	71%
Computer Architecture (10)	17	50%
Software Engineering (15)	15	44%
Programming Languages (9)	13	38%
Algorithms and Complexity (5)	13	38%
Introduction to Computer Science (1)	12	35%
Programming I (2)	11	32%
Computer Hardware (8)	9	26%
Operating Systems (11)	9	26%
Data Structures (4)	8	24%
Programming II (3)	7	21%
Computer Org. & Assembly Lang. (6)	7	21%
System Programming Concepts (7)	6	18%
Database Concepts (13)	6	18%
Computer Science Capstone (12)	4	12%
Compiler Design (18)	5	15%
Data Comm. & Networking (16)	4	12%

Table 5.5: Typical Curriculum: Interest in Courses Listed in Rank Order

Importance of knowing Exact Courses	Responses
It is not important (1)	2
It is a little bit important (2)	8
It is extremely important (3)	23
Average based on choice values 1-3	2.636

Table 5.6: Typical Curriculum: Importance of Exact Course List and Course Names

Importance of knowing Required Course List	Responses
It is not important (1)	0
It is a little bit important (2)	6
It is extremely important (3)	27
Average based on choice values 1-3	2.818

Table 5.7: Typical Curriculum: Importance of Required Course List

Both Sections Together

After the section "What You Will Be Studying," the survey presents both sections

together and asks participants questions about the curriculum as a whole.

Question 1: Above are both sections you've been shown before. Put the following items in the order you think is important with the most important at the top. The items are listed as they appear above.

Students indicated their ranking of the items within the curriculum presented that were important in Table 5.8.

Section Importance	1	2	3	4
Introduction (The first 3 paragraphs) (1)	27	2	4	1
Course Number (The 1st column) (2)	0	15	5	14
Course Name (The 2nd column) (3)	7	11	15	1
Course Credits (The 3rd column) (4)	0	6	10	18

Table 5.8: Typical Curriculum: Importance of Items in the Curriculum

The Borda method is used to analyze data from questions that seek priority ordering or rank ordering. Table 5.9 provides the Borda data and score indicating the Introduction being the most important part of the Typical Curriculum followed by course name, course number and course credits.

Rank	Section Importance	1	2	3	4	Borda Score
1	Introduction (The first 3 paragraphs) (1)	104	6	8	1	119
2	Course Name (The 2nd column) (2)	28	33	30	1	90
3	Course Number (The 1st column) (3)	0	42	10	14	66
4	Course Credits (The 3rd column) (4)	0	18	20	18	55

 Table 5.9: Typical Curriculum: Importance of Items in the Curriculum Ranked by Borda Scores

However, in analyzing the data, thirteen responses prioritize the data in the order it was presented, which makes those results suspect. Table 5.10 removes the suspected rank entries and shows the recomputed Borda scores. The first and second items have not changed, but the third and fourth have switched places.

Rank	Section Importance	1	2	3	4	Borda Score
1	Introduction (The first 3 paragraphs) (1)	52	6	8	1	67
2	Course Name (The 2nd column) (2)	28	33	2	1	64
4	Course Credits (The 3rd column) (3)	0	18	20	4	42
3	Course Number (The 1st column) (4)	0	3	10	14	27

 Table 5.10:
 Typical Curriculum: Importance of Items in the Curriculum Ranked by Borda

 Scores with Suspect Responses Removed

The following questions were open ended. The responses have been summarized below.

Question 2: What do you like the most about what you've been shown (the Introduction and What You Will Be Studying)?

- 1. The course list is simple and understandable. 18 responses referred to this in some fashion.
- 2. The introduction is clear and sparks interest. Nine responses referred to this.
- 3. The format of the presented curriculum. Three responses.
- 4. Job opportunities and flexibility of the curriculum both had a single response.

Question 3: What do you like the least about what you've been shown (the Introduction and What You Will Be Studying)?

- 1. Ten of the participants refer to the introduction as boring, bland, and not very descriptive.
- 2. Nine participants indicated that there are no specifics or descriptions to the courses listed and that they did not understand what the courses meant.

- 3. Five responses referred to the "What You Will Be Studying" section being overwhelming, or identified a specific course they did not like.
- 4. Three responses felt the curriculum was too difficult.
- 5. Two responses indicated the course numbers have no meaning.

Question 4: What could be added that would help you understand the major better?

- 1. Twenty responses indicate course details and descriptions are necessary.
- 2. Seven indicated job opportunities would be helpful, with one indicating jobs held by previous majors would be helpful.

Question 5: After reading the Introduction and What You Will Be Studying, revisit your interest in studying Computer Science.

There was a slight increase in interest level after taking the Typical Curriculum survey. Two students who previously indicated studying Computer Science had never crossed their mind indicated they are not interested (6%) indicating what they observed within the curriculum helped them realize that Computer Science is not something they have interest in studying. However, the interest level of several others increased (See Table 5.11).

Table 5.12 show the changes in interest levels from the beginning of the survey to the end. The interest level of nine students increased, the interest level of twenty-two students remained the same, and the interest level of three students declined. Though this appears a positive result, sixteen of the thirty-four students (47%) remain within the "not interested" area while only nine (26%) are within the

	Previous Interest	Current Interest
Interest Level	Level	Level
It has never crossed my mind (1)	4	2
I am not interested (2)	15	14
I might consider it (3)	6	9
I am a little interested (4)	4	5
I am extremely interested (5)	4	4

 Table 5.11: Typical Curriculum: Students' Interest Level in Studying Computer Science

 After Taking the Survey

interested area. The data suggests that the students are still not interested in Computer Science based on the Typical Curriculum.

Positive Change	9(26%)
No Change	22 (65%)
Negative Change	3(9%)

 Table 5.12:
 Typical Curriculum:
 Change in Interest Level

5.2.2 Job-Focused Curriculum Responses

Initial Interest Question

The first question posed to participants prior to seeing any portion of the curriculum asked about their initial interest in studying Computer Science. The last question posed after the participants have evaluated the curriculum asked them to revisit their interest in studying Computer Science. The purpose was to determine if their interest level has changed based on the curriculum they have been evaluating. Below are the results of the first interest question.

Question 1: Before we start the survey, please rate your interest in studying Computer Science.

Almost half of the students taking the Job-Focused Curriculum survey (47%)

indicated they were not interested in studying Computer Science (See Table 5.13). 16% indicated they were a little bit interested in studying Computer Science while 21% indicated an extreme interest.

Interest Level	Responses
It has never crossed my mind (1)	0
I am not interested (2)	9
I might consider it (3)	3
I am a little interested (4)	3
I am extremely interested (5)	4

 Table 5.13:
 Job-Focused:
 Students' Initial Interest Level in Studying Computer Science

Curriculum Introduction

The survey displays the introduction to the Job-Focused Curriculum (See Figure 3.2) followed by several questions asking the participant's opinions about the introduction.

Question 1: After looking at the Introduction above, how well do you think you understand what this major is about?

After looking at the Introduction to the Job-Focused Curriculum, 63% of the students indicated they had a general idea of what he major was all about, 32% indicated the Introduction made it extremely clear, while the rest, 5%, indicated the Introduction did not help them understand what the major was about (See Table 5.14).

Question 2: After looking at the Introduction above, how well do you think you understand what jobs you could apply for after graduation?

The majority of the students, 84%, thought that the Introduction provided a general idea of what jobs could be applied for after graduation (See Table 5.15).

Understand the Major	Responses
I don't understand it at all (1)	1
I understand it a little bit (2)	12
It is extremely clear (3)	6
Average based on choice values 1-3	2.263

Table 5.14:	Job-Focused:	Responses to	o the	Introduction	Fostering	Understanding about	t
	the Major						

Understand Job Availability	Responses
I have no idea (1)	1
I have a general idea (2)	16
It is extremely clear (3)	2
Average based on choice values 1-3	2.053

Table 5.15: Job-Focused: Responses to the Introduction Fostering Understanding about
Jobs

Question 3: Which concentrations look interesting to you (check all that apply or None of the Above)?

Only one concentration, Game Development, looked interesting to half the students taking the survey. Three others, Web Development, 42%, Security, 38%, and Software Engineering and Application Development, 33%, were interesting to over a third of the students (See Table 5.16).

Answer	Response	%
Game Development (2)	12	50%
Web Development (1)	10	42%
Security (4)	9	38%
Software Engineering, Application Development (6)	8	33%
Database (5)	5	21%
Theory and Analysis (8)	5	21%
Networking (3)	3	13%
Technology Infrastructure (7)	3	13%
None of the Above (9)	3	13%

Table 5.16: Job-Focused: Interest in Concentrations Listed in Rank Ord	Table 5.16:	Job-Focused:	Interest in	Concentrations	Listed in Rank	Order
--	-------------	--------------	-------------	----------------	----------------	-------

1

Question 4: Put the concentrations you chose in the order of interest to you with the most interesting at the top.

The students were asked to put the concentrations that they chose for Question 3 in order of interest. To determine the aggregate rank, the Borda method was used to evaluate the results of this question. The top four that were chosen in Question 3 were also the top four in rank order (See Table 5.17).

Concentration	Borda Value
Game Development (1)	95
Web Development (2)	72
Security (3)	63
Software Engineering, Application Development (4)	51
Theory and Analysis (5)	29
Database (6)	16
Technology Infrastructure (7)	13
Networking (8)	10

Table 5.17: Job-Focused: Interest in Concentrations Listed by Borda Value

What You Will Be Studying

Following the Introduction, the survey displays the "What You Will Be Studying" section (See Figure 3.3) and asks participants questions relating to what they have been presented.

Question 1: After looking at What You Will Be Studying above, how well do you think you understand what you will be studying?

Over half the students, 53%, chose the middle option, indicating they understand what they would be studying based on the "What You Will Be Studying" section (See Table 5.18). Another 42% indicate they believe that section makes it extremely clear.

Importance of knowing Exact Courses	Responses
I don't understand at all (1)	1
I understand a little bit (2)	10
It is extremely clear (3)	8
Average based on choice values 1-3	2.368

Table 5.18:	Job-Focused:	Responses	to	What	You	Will	Be	Studying	Fostering
Understanding in What is Studied									

Question 2: How important is knowing the exact courses and course names you will be taking?

The majority of the students, 63%, indicate that knowing the exact courses and course names of what they would be studying is extremely important (See Table 5.19) which is similar to those taking the Typical Curriculum survey (70%) (See Table 5.6).

Importance of knowing Exact Courses	Responses
It is not important (1)	3
It is a little bit important (2)	4
It is extremely important (3)	12
Average based on choice values 1-3	2.474

 Table 5.19:
 Job-Focused:
 Importance of Exact Course List and Course Names

Question 3: How important is it to you to know the required course list?

The majority of the students, 78%, indicated that it is extremely important to know the required courses for your major (See Table 5.20) which again is similar to those taking the Typical Curriculum survey, 82% (See Table 5.7). Only two students, 11%, indicated it is not important at all while the other two indicated it has a little importance. In other words, most students looking at a curriculum need to know what courses they are required to take.

Importance of knowing Required Course List	Responses
Not important at all (1)	2
A little bit important (2)	2
Extremely important (3)	15
Average based on choice values 1-3	2.684

Table 5.20: Job-Focused: Importance of Required Course List

Both Sections Together

After the section "What You Will Be Studying," the survey presents both sections together and asks participants questions about the curriculum as a whole.

Question 1: Above are both sections you've been shown before. Put the following items in the order you think is important with the most important at the top. The items are listed as they appear above.

Curricular Item	1	2	3	4	5	6	7
The Introduction (The first paragraph)	14	0	0	1	0	2	2
Concentration Areas (Listed in both areas -i.e. Web	2	10	3	1	3	0	0
Development, Game Development)							
The Job Possibilities (In the 1st rectangle under each	2	3	7	3	1	0	3
Concentration Area - i.e. Web Designer)							
The Introduction to the Areas of Study	1	5	3	8	2	0	0
The General Areas of Study (In the 3-column list in the	0	1	2	4	9	2	1
2nd rectangle)							
Concentration Areas of Study (In the 2nd rectangle	0	0	3	1	1	13	1
under each Concentration)							
The number of Concentrations	0	0	1	1	3	2	12

 Table 5.21:
 Job-Focused:
 Importance of Items in the Curriculum

Table 5.21 presents the number of responses for each of the ranking levels for each curricular items. To determine proper ranking order, the Borda method was employed. The Borda method is used to analyze data from questions that seek priority ordering or rank ordering. Table 5.22 provides the Borda data and score

Curriculum followed by course name, course number and course credits.

								Borda
Curricular Item	1	2	3	4	5	6	7	Score
The Introduction (The first paragraph)	98	0	0	4	0	4	2	108
Concentration Areas (Listed in both areas	14	60	15	4	9	0	0	102
- i.e. Web Development, Game Develop-								
ment)								
The Introduction to the Areas of Study	7	30	15	32	6	0	0	90
The Job Possibilities (In the 1st rectangle	14	18	35	12	3	0	3	85
under each Concentration Area - i.e. Web								
Designer)								
The General Areas of Study (In the 3-column	0	6	10	16	27	4	1	64
list in the 2nd rectangle)								
Concentration Areas of Study (In the 2nd	0	0	15	4	3	26	1	49
rectangle under each Concentration)								
The number of Concentrations	0	0	5	4	9	4	12	34

 Table 5.22: Job-Focused Curriculum: Importance of Items in the Curriculum Ranked by Borda score

The following questions were open ended. The responses have been summarized below.

Question 2: What do you like the most about what you've been shown (the

Introduction and What You Will Be Studying)?

- 1. Five responses indicated the concentration areas were helpful in knowing what one might study.
- 2. Four responses indicated the layout and format were easy to read and organized.
- 3. Four responses indicated the Areas of Study section was helpful.

Question 3: What do you like the least about what you've been shown (the Introduction and What You Will Be Studying)?

- 1. Six responses indicated more detail was needed. Specifically for concentrations and job opportunities.
- 2. One indicated columns were confusing.

Question 4: What could be added that would help you understand the major better?

- 1. Five responses indicated job descriptions would be helpful.
- 2. Four responses indicated course descriptions would clarify what one would be studying.
- 3. Two responses indicated concentration descriptions would be helpful.

Question 5: After reading the Introduction and What You Will Be Studying, revisit your interest in studying Computer Science.

	Previous	Current
Interest Level	Interest Level	Interest Level
It has never crossed my mind (1)	0	0
I am not interested (2)	9	10
I might consider it (3)	3	2
I am a little interested (4)	3	3
I am extremely interested (5)	4	4

 Table 5.23: Job-Focused: Students' Interest Level in Studying Computer Science After

 Taking the Survey

Table 5.24 show the changes in interest levels from the beginning of the survey to the end. The interest level of one student increased, the interest level of fifteen

students remained the same, and the interest level of two students declined. The results indicate that more students are not interested (53%) than are interested (37%). The data suggests that students are still not interested in Computer Science based on the Job-Focused Curriculum.

Positive Change	1 (6%)
No Change	15~(83%)
Negative Change	2(11%)

 Table 5.24:
 Job-Focused:
 Change in Interest Level

5.2.3 Technology Information

The first question in the technology section, "What classes in technology have you taken? (check all that apply)," is to get an idea of the knowledge level of the participants. Computer Applications such as Word and Excel and Programming are two courses that over half the students have taken.

Technology Course	Response	%
Computer Applications (Word, Excel)	27	63%
Programming	22	51%
Graphics	9	21%
Digital Photography	8	19%
Web Design	7	16%
Video or Audio Editing	6	14%
Hardware	4	9%
Databases	2	5%
Network Certification	0	0%

Table 5.25: First Survey Instrument: Technology Courses Students have Taken

The second question, "What math classes have you taken?" provides information about the level of mathematical exposure of the participants. Over 50% of those participating have taken Algebra, Geometry, and Trigonometry.

Math Course	Response	%
Algebra	52	98%
Geometry	50	94%
Trigonometry	29	55%
Calculus	16	30%
Statistics	7	13%

Table 5.26: First Survey Instrument: Math Courses Students have Taken

The third question, "What software tools do you use? (Check all that apply)" reinforces the fact that 63% of those participating have taken a course on computer applications. Over 63% of participants use word processing, spreadsheet, and presentation software.

Software Tool	Response	%
Word Processing	50	98%
Presentation (i.e. Power Point)	46	90%
Spreadsheets	32	63%
Database	11	22%
Geometer	4	8%
Minitab	0	0%

 Table 5.27:
 First Survey Instrument:
 Software Tool Students Use

The last technology related question reinforces the characteristics of this Y-Generation. "What service-oriented applications do you use? (Check all that apply)"

5.2.4 Demographics of the First Survey Instrument

Of those that participated, 23 were male and 30 were female. The ages ranged from 14 to 21 with the median age being 17. Nine states were represented in this survey: California, Colorado, Georgia, Illinois, Kentucky, Ohio, Oregon, Pennsylvania, and Vermont.

Service-Oriented Application	Response	%
Email	53	100%
Search Engines (i.e. Google)	52	98%
Internet Browsing	49	92%
Social Networking (i.e. Facebook)	47	89%
Music Downloads (i.e. iTunes)	45	85%
Instant Messaging	40	75%
Movies On-line	34	64%
On-line Radio	23	43%
On-line Photo Management (i.e. Flickr)	15	28%

Table 5.28: First Survey Instrument: Service-Oriented Application Students Use

State	Participants	Percent
California	17	44%
Colorado	5	13%
Georgia	4	10%
Illinois	1	3%
Kentucky	2	5%
Ohio	2	5%
Oregon	1	3%
Pennsylvania	18	46%
Vermont	1	3%

Table 5.29: First Survey Instrument: State Representation

All of those taking the survey indicated they are planning on going to college. Of those planning on attending college, intended majors include Archaeology (1), Architecture (2), Art (1), Biology (3), Business (5), Chemistry (1), Computer and Information Science (5), Criminal Justice (1), Culinary Arts (1), Education (2), Engineering (6), Graphic Design (1), Humanities (1), Mathematics (1), Music (2), Nursing (2), Physics (2), Political Science (1), Pre-Med (1), Psychology (3), Science (1), Social Work (1), Spanish (1), and Sports (1). This indicates that the participants in the second survey instrument have a wide range of interests and not all are looking to go into Computer Science.

5.2.5 Summary of the First Survey Instrument

Though the survey had a relatively low participation rate, there were several lessons learned that were applied to the second survey instrument, specifically the Student-Focused Curriculum. First, it became evident that students expect to see a list of required courses. 70% of the students in the Typical survey and 63% of the students in the Job-Focused survey indicated that it is extremely important to know the exact courses they will be taking. 82% of the students in the Typical survey and 79% of the students in the Job-Focused survey indicated that having a required course list is extremely important. The Job-Focused Curriculum did not present specific courses, but study areas. This appears to have confused or overwhelmed students, which may have caused the post interest level to remain the same or drop.

In both surveys, descriptions were identified as lacking, specifically course descriptions. Participants in the Job-Focused survey also indicated that concentration details were needed.

Several other comments from the Typical survey influenced the development of the Student-Focused Curriculum. One comment shared by several participants indicated that course numbers have no meaning and therefore, were left out of the Student-Focused Curriculum. Another comment made by seven participants was that some information on job opportunities and those jobs held by previous graduates would be helpful. This also was included in the Student-Focused Curriculum.

Several comments from the Job-Focused survey also influenced or reinforced ideas for the development of the Student-Focused Curriculum. Five participants indicated concentrations were important which reinforced the idea of having them in the Student-Focused Curriculum. One indicated that the columns were distracting

and caused confusion. Therefore, columns were not used in the Student-Focused Curriculum.

5.3 Results of the Second Curricular Presentation Surveys

The complete survey can be found in Appendix I. The previous section described the procedures used to develop the surveys. The second survey instrument was developed to compare a Typical Curriculum to a Student-Focused Curriculum and combined a survey for the Typical Computer Science Curriculum and a survey for the Student-Focused Curriculum. 177 high school students participated in this instrument. Eighty-five students started the Typical Curriculum survey and Eighty-one completed it. 92 students started the Student-Focused Curriculum survey and 83 completed it. The completion rate was 92.66%.

5.3.1 Typical Computer Science Survey Responses

As in the first survey instrument, the first question posed to the participant prior to seeing any portion of the curriculum asks about their initial interest in studying Computer Science (See Table 5.30). The last question posed after the participant evaluated the curriculum asked them to revisit their interest in studying Computer Science (See Table 5.35). The purpose is to determine if their interest level has changed based on the curriculum they have been evaluating. Below are the results of the first interest question for the Typical Curriculum Survey.

Question 1: Before we start the survey, please rate your interest in studying Computer Science.

Interest Level	Responses
It has never crossed my mind (1)	3
I am not interested (2)	12
I might consider it (3)	24
I am a little interested (4)	21
I am extremely interested (5)	21

 Table 5.30: Second Survey Typical Curriculum: Students' Initial Interest in Studying Computer Science

Curriculum Introduction

The survey displays the introduction to the Typical Curriculum followed by a question asking the participant to indicate their agreement level to several statements.

Question 1: After looking at the Introduction to the Computer Science Major above, indicate how much you agree or disagree with each statement (The results are displayed in Table 5.31).

Question 2: Which of the following ideas from the introduction motivates you to look into the Computer Science Major further? Choose no more than 3 (The results are displayed in Table 5.32).

What You Will Be Studying

Following the Introduction, the survey displays the Typical Curriculum's Required Courses section and once again asks the participants to indicate their level of agreement to five statements (See Figure 5.23).

Question 1: After looking at the required courses above, indicate how much you agree or disagree with each statement (The results are displayed in Table 5.33).

Question 2: Which of the following items from the required course list above

	Strongly		Neither Agree nor		Strongly	
Statement	Strongly Disagree	Disagree	Disagree		Strongly Agree	Mean
The Introduction clearly de- scribes the Computer Science major.	3	16	18	33	11	3.407
The Introduction gives me a clear picture of the breadth of Computer Science.		15	20	35	8	3.370
The Introduction makes the Computer Science Major inter- esting to me.		17	27	26	5	3.086
The Introduction motivates me to investigate more into Computer science.		22	25	20	7	2.975
The Introduction makes me confident about my future op- tions after college.		17	19	26	15	3.383

 Table 5.31: Second Survey Typical Curriculum: Student Agreement Level of Statements

 Related to the Curriculum Introduction

motivates you to look into the Computer Science Major further? Choose no more than 3 (The results are displayed in Table 5.34).

This question provided the opportunity for the participant to add their own option. The added options include, "Working with hardware and software" and "Ability to choose" (two of the four were off-task).

Question 3: After reading the Introduction and What You Will Be Studying, revisit your interest in studying Computer Science (The results are displayed in Table 5.35).

Table 5.36 show the changes in interest levels from the beginning of the survey to

Item in the Introduction	Response	%
From the introduction text, "highest projected job growth"	48	59%
From the introduction text, "rapid advances in technology"	32	40%
From the introduction text, "flexibility in tailoring their college	26	32%
education"		
From the introduction text, "prepared for lifelong learning"	16	20%
The breakdown of required credits ("48 credits of computer science	13	16%
courses, 12credits")		
From the introduction text, "dramatic changes in society"	12	15%
From the introduction text, "entry-level positions in hardware	9	11%
and software"		
From the introduction text, "Bachelor of Science degree"	9	11%
None of the Above	13	16%

 Table 5.32: Second Survey Typical Curriculum: Importance of Items in the Introduction

 that Fosters Motivation

the end. The interest level of three students increased, the interest level of fifty-seven students remained the same, and the interest level of seventeen students declined. Three quarters of the interest level of the students remained the same while 22% dropped. The data suggests that the Typical Curriculum does not inspire a majority students (96%) to pursue Computer Science and actually causes disinterest in many (22%).

Several of the questions following the post interest question attempted to determine what caused changes in interest.

Question 4: If your interest level has increased, what motivated the increase? Check all that apply (The results are displayed in Table 5.37).

This question provided the opportunity for the participant to add their own option. The only option added by participants whose interest level increased was, "How atrocious Computer Science is!" which brings into question the validity of the student's response to the question regarding their interest level. There were other

Statement	Strongly Disagree		Neither Agree nor Disagree		Strongly Agree	Mean
The variety of courses appeals to me.	-	9	17	27	16	3.350
The required courses give me a good understanding of what a Computer Science major studies.		0	12	42	25	4.125
The required courses motivate me to investigate more into this major.		18	25	16	10	2.950
The required courses provide flexibility in a student's course of study.		20	26	22	4	2.925
As a result of looking at the required courses, I am more apt to look into studying computer science in my college experience.		18	22	24	5	2.925

Table 5.33: Second Survey Typical Curriculum: Student Agreement Level of StatementsRelated to the Required Course List

Item in the Required Course List		07
	Response	70
The Variety of Computer Courses	31	38%
The Courses	24	30%
The Mathematics Courses	22	27%
Seeing the whole sequence at once	17	21%
The sequencing of courses	8	10%
The number of courses required	8	10%
Other	4	5%
None of the Above	20	25%

Table 5.34: Second Survey Typical Curriculum: Importance of Items in the RequiredCourse List that Fosters Motivation

Previous	Current
Interest Level	Interest Level
3	2
12	20
24	24
21	17
21	18
	3 12 24 21

 Table 5.35: Second Survey Typical Curriculum: Students' Interest Level in Studying

 Computer Science After Taking the Survey

Positive Change	3 (4%)
No Change	57 (74%)
Negative Change	17 (22%)

Table 5.36: Typical Curriculum: Change in Interest Level

additional opinions added to this question. However, these opinions were from participants whose interest level *actually dropped*. The majority of the participants evaluating the Typical Curriculum showed no increased interest.

Reasons	Response
The Mathematics	2
The Introductory paragraphs	1
The Required Courses	1
Other	1

 Table 5.37:
 Second Survey Typical Curriculum:
 Students' Reasons for Increase in Interest

The following question was open ended attempting to get at the reasons behind student's interest remaining the same or dropping.

Question 5: If your interest level has remained the same or decreased, please try to articulate why. Remember, we want your honest opinion.

• 11 responses indicated the participant is not interested in Computer Science

with 3 of them adding that the subject is boring.

- 7 participants are already interested.
- 4 participants refer to the mathematics requirement being too difficult
- 2 individuals indicated the course descriptions were not helpful.
- 2 individuals indicated they have already decided their major.
- 2 individuals indicated they have other interests.
- 2 identify the programming requirement as being problematic.
- 1 indicated that AP Computer Science has turned him/her off.
- 1 acknowledged that the curriculum has caused the drop in interest.
- 1 indicated it looked too difficult.

One student summed up the Hypothesis of this research by saying, "This curriculum seems to be 'standard' for practically every college/university. Nothing added new knowledge or peaked my interest further."

5.3.2 Student-Focused Computer Science Survey Responses

As in all the other surveys, the first question posed to the participant prior to seeing any portion of the curriculum asked about their initial interest in studying Computer Science. The last question posed after the participant evaluated the curriculum asked them to revisit their interest in studying Computer Science. The purpose was to determine if their interest level had changed based on the curriculum they had been evaluating. Below are the results of the first interest question for the Student-Focused Curriculum Survey.

Interest Level	Responses
It has never crossed my mind (1)	4
I am not interested (2)	13
I might consider it (3)	19
I am a little interested (4)	18
I am extremely interested (5)	29

Table 5.38: Student-Focused: Students' Initial Interest in Studying Computer Science

Question 1: Before we start the survey, please rate your interest in studying Computer Science (The results are displayed in Table 5.38).

Curriculum Introduction

The survey displays the introduction to the Student-Focused Curriculum which consists of two paragraphs introducing the major and a list of concentration, each containing a description and jobs in which recent graduates are currently involved. This is followed by a question asking the participant to indicate their agreement level to several statements.

Question 1: After looking at the Introduction to the Computer Science Major above, indicate how much you agree or disagree with each statement (The results are displayed in Table 5.39).

Question 2: Which of the following ideas from the introduction motivates you to look into the Computer Science Major further? Choose no more than 3 (The results are displayed in Table 5.40).

	Strongly		Neither Agree nor		Strongly	
Statement	•••	Disagree	Disagree		00	Mean
The Introduction clearly de- scribes the Computer Science major.	7	5	15	43	13	3.602
The Introduction gives me a clear picture of the breadth of Computer Science.		5	18	39	18	3.771
The Introduction makes the Computer Science Major inter- esting to me.	6	12	24	29	12	3.349
The Introduction motivates me to investigate more into Computer science.		18	25	24	8	3.072
The Introduction makes me confident about my future op- tions after college.	8	10	25	30	10	3.289

 Table 5.39:
 Student-Focused:
 Student Agreement Level of Statements Related to the Curriculum Introduction

What You Will Be Studying

Following the Introduction, the survey displays the Student-Focused Curriculum's Required Courses section. This section is made up of the Core Requirements followed by each concentration and their requirements (for complete details, see Appendix I). After observing the Required Courses section, participants are again asked to indicate their level of agreement to five statements.

Question 1: After looking at the required courses above, indicate how much you agree or disagree with each statement (The results are displayed in Table 5.41).

Question 2: Which of the following items from the required course list above

Answer	Response	%
From the introduction text, "rapid advances in technology"	24	29%
From the introduction text, "dramatic changes in society"	11	13%
From the introduction text, "highest projected job growth"	40	48%
From the introduction text, "prepared for lifelong learning"	14	17%
From the introduction text, "Bachelor of Science degree"	4	5%
The variety of Concentrations	25	30%
A Specific Concentration	12	14%
Concentration Descriptions	12	14%
Positions of Recent Graduates	18	22%
Build Your Own Concentration	13	16%
None of the Above	12	14%

 Table 5.40:
 Student-Focused:
 Importance of Items in the Introduction that Fosters

 Motivation
 Motivation

motivates you to look into the Computer Science Major further? Choose no more than 3 (The results are displayed in Table 5.42).

This question provided the opportunity for the participant to add their own option. The added options include, "Computer technology" and "Editing movies."

Question 3: Which concentration(s) motivates you to look into the Computer Science major further? Check all that apply (The results are displayed in Table 5.43).

Question 4: After reading the Introduction and What You Will Be Studying, revisit your interest in studying Computer Science (The results are displayed in Table 5.44).

Table 5.45 show the changes in interest levels from the beginning of the survey to the end. The interest level of nineteen students increased, the interest level of fifty-three students remained the same, and the interest level of eleven students declined. The Student-Focused Curriculum increased the interest level of almost twice as many students (23%) than of those whose interest level decreased (13%).

Statement The variety of courses and concentrations appeals to me.	Strongly Disagree 6	Disagree 11	Neither Agree nor Disagree 14	Agree 31	Strongly Agree 18	Mean 3.550
The core requirements and concentration details give me a good understanding of what a Computer Science major studies.		6	8	44	20	3.854
The core requirements and concentration details motivate me to investigate more into this major.		14	27	25	10	3.232
The core requirements and concentration details provide flexibility in a student's course of study.		9	24	34	9	3.378
As a result of looking at the core requirements and concentration details, I am more apt to look into studying computer science in my college experience.		19	25	19	12	3.122

 Table 5.41:
 Student-Focused:
 Student Agreement Level of Statements Related to the

 "What You Will Be Studying"
 Section

The data seems to suggest that a Student-Focused curriculum can inspire students to pursue a Computer Science major.

The questions following the post interest question focus on the reasons participants have changed their interest.

Question 5: If your interest level has increased, what motivated the increase?

Check all that apply (The results are displayed in Table 5.46).

Answer	Response	%
The Core Courses	14	17%
The Course Descriptions	26	31%
The Number of Concentrations	18	22%
The Variety of Concentrations	28	34%
The flexibility of the program	25	30%
A Specific Concentration	20	24%
Specific Courses	17	20%
Electives for each concentration	14	17%
Other	2	2%
None of the Above	13	16%

 Table 5.42: Student-Focused: Importance of Items in the Required Course List that

 Fosters Motivation

	Student's Indicating	% of
Concentration	Interest	Responses
Security and Forensic Computing	7	8%
Artificial Intelligence	11	13%
Networking	6	7%
Game Development	13	16%
Software Engineering	10	12%
Web and Media Development	7	8%
Build Your Own	5	6%

 Table 5.43:
 Student-Focused:
 Responses
 Related
 to
 Concentrations
 that
 Motivate

 Students to Look into Computer Science
 Students
 Students

	Previous	Current
Interest Level	Interest Level	Interest Level
It has never crossed my mind (1)	4	5
I am not interested (2)	13	13
I might consider it (3)	19	14
I am a little interested (4)	18	21
I am extremely interested (5)	29	30

 Table 5.44:
 Student-Focused:
 Students' Interest Level in Studying Computer Science

 After Taking the Survey
 Students' Interest Level in Studying Computer Science

This question also provided the opportunity for the participant to add their own

reasons for their increased interest level. The added reasons include, "Course

Positive Change	19 (23%)
No Change	53~(64%)
Negative Change	11 (13%)

 Table 5.45:
 Student-Focused Curriculum: Change in Interest Level

Answer	Response	%
The Introductory paragraphs	7	37%
The Concentrations	10	53%
The Number of Possible Concentrations	12	63%
Future Opportunities Presented by Recent Graduates	14	74%
The Course Offerings	18	95%
The Flexibility	13	68%
Other	4	21%

Table 5.46: Student-Focused: Students' Reasons for Increase in Interest

descriptions increased my interest," "Survey made me realize all the opportunities in this career field that I did not realize existed" and "I was not aware that the field of Computer Science had so many different options to go into. The variety and number of possible concentrations increased my interest level in computer science." Two indicated specific items in the curriculum: "Computer Technology" and "Game Development."

The only responses included in Table 5.46, were those from participants whose *interest level increased*. The percentages reflect the percent the response is out of the number of participants whose interest increased. The Student-Focused Curriculum *influenced 19 participants and increased their interest level*. The following question is an open ended question attempting to get at the reasons behind student's interest remaining the same or dropping.

Question 6: If your interest level has remained the same or decreased, please try to articulate why. Remember, we want your honest opinion.

Those whose interest level had remained the same indicated the following as reasons for remaining the same:

- Seven participants indicated they are already interested in Computer Science; therefore, the survey did not change their interest level.
- Five participants indicated they have already chosen a different major; therefore, their interest level has not changed.
- Three participants indicated they are just not interested in Computer Science.
- Some of the single responses include, "it looks difficult," "the information is overwhelming," "the Mathematics requirement," and "not good at it."

Those whose interest level had dropped indicated the following as reasons for dropping their interest level:

- Two participants indicated they are just not interested in Computer Science.
- The single responses include "different major chosen" and "the amount of courses required for each concentration."

As mentioned previously, one student summed up the positive aspects of the Student-Focused Curriculum, "I was not aware that the field of Computer Science had so many different options to go into. The variety and number of possible concentrations increased my interest level in computer science."

5.3.2.1 Demographics of the Second Survey Instrument

Of those that participated, 116 were male and 46 were female. The ages ranged from 14 to 21 with the median age being 17. Nine states were represented in this

State	Participants	Percent
California	13	8%
Colorado	10	6%
Illinois	20	13%
Maine	6	4%
New Jersey	14	9%
Ohio	6	4%
Pennsylvania	42	27%
Tennessee	10	6%
Texas	36	23%

survey: California, Colorado, Illinois, Maine, New Jersey, Ohio, Pennsylvania, Tennessee, and Texas.

Table 5.47: Second Survey Instrument: State Representation

Of those taking the survey 156 or 97% indicated they are planning on going to college. Of those planning on attending college, intended majors include Accounting (2), Actuarial Science (1), Art (3), Biology (3), Business (5), Chemistry (2), Child Care (1), Computer and Information Science (34), Criminal Justice (1), Economics (1), Engineering (34), English (1), Environmental Science (1), Fashion Retail Management (1), Health (2), History (1), International Affairs (1), Journalism (1), Law (1), Linguistics (1), Mathematics (4), Media (1), Medical (4), Music (2), Nursing (1), Physics (3), Political Science (1), Psychology (4), Science (4), Sociology (1), Spanish (1), and Sports (1). This indicates that the participants in the second survey instrument have a wide range of interests and not all are looking to go into Computer Science.

Of the 156 planning to attend college, 94 (60%) have looked at a college curriculum. Of these 94, 67 (71%) indicate that looking at the college curriculum online influenced their decision for a major.

Participants have taken a variety of AP courses. Just over half the participants,

247

Chinese, Economics, English, Environmental Science, European History, Government, Music, Psychology, and Spanish.

Answer	Response	%
Biology	28	17%
Calculus AB or BC	61	37%
Chemistry	29	18%
Computer Science	97	59%
Physics B or C	37	23%
Statistics	23	14%
Other:	61	37%

 Table 5.48:
 Second Survey Instrument:
 AP Courses Students have Taken

5.3.3 Summary of the Second Survey Instrument

Summary of the Typical Curriculum Survey

Over 50% (59%) of participants in the Typical survey indicate that the motivating factor in the introductory paragraphs is the information from the Bureau of Labor Statistics that computer and technology related fields claim some of the highest projected job growth in the United States.

After looking at the required course list, 53% indicate they agree or strongly agree with "the variety of courses is appealing" and 84% agree or strongly agree that "the required courses give them a good understanding of what a Computer Science major studies." However, when asked about motivating factors, only 30% indicated that the courses were a motivating factor, and only 38% indicated that the variety of computer courses was a motivating factor.

Summary of the Student-Focused Curriculum Survey

Over 50% of participants in the Student-Focused survey indicated that the variety of courses and concentrations is appealing (61%), the core requirements and concentration details give a good understanding of what a Computer Science major studies (78%), and the core requirements and concentration details provide flexibility in a student's course of study (52%). However, no item from the required course list motivated more than 34% of the participants. Yet when asked what motivated an increase in their interest level, 95% of those whose interest increased indicated the course offerings as being the motivating factor. In addition, 74% indicated the future opportunities presented by recent graduates, 68% indicated the flexibility, and 63% indicated the number of possible concentrations whereas 53% indicated the concentrations themselves.

Therefore, when presented with a Computer Science curriculum, it is important to tailor the curriculum to the appropriate audience, namely prospective students.

Chapter 6

Summary and Reflection

The goal of research was to investigate the attitudes and perceptions of today's high school students toward computer-related curricula presented on the World Wide Web. The motivation for this study lies in the drop in enrollment of students pursuing computing-related majors and the need to challenge higher education to change the way it communicates courses of study.

My intent for this research is to provide direction and motivation to higher education to focus on communicating effectively with those for whom they are providing a service. It is also my intent to draw the attention of computing education researchers toward high school students. Without including those who are about to pursue a higher education in further study, researchers will continue to address the needs of those already involved in Computer Science.

The results of this research reflect the attitudes and perceptions of a limited population of students. The limited population comes from a specific high school, college, and those over whom Advanced Placement Computer Science teachers have influence. The students involved have developed opinions based on their life experience and their educational experience in the schools they attend.

This research shows evidence that in designing the presentation of Computer Science as a Student-Focused Curriculum, the opinions of college students had

effected the interest level of high school students across the United States. That observation provides an opportunity for researchers to look toward new avenues of opinion in designing research.

6.1 Addressing the Hypotheses

The following hypotheses were stated in Chapter 1 and are addressed in this chapter.

- 1. When presented with a more relevant Computer Science curriculum than a typical curriculum today, students will be encouraged and motivated to enroll in the major.
- 2. Colleges and Universities have not changed the way they display Computer Science curriculum over the last ten years. When compared with earlier course catalogs, courses will have been added, but names of standard courses will remain the same.
- 3. When asked about information technology, students react positively, enjoying its use.
- 4. College Computer Science curricula do not correlate with job postings found on job search web sites nor with what is considered to be important areas in computing.

6.1.1 Computer Science Curricular Presentation

When presented with a more relevant Computer Science curriculum than a typical curriculum today, students will be encouraged and motivated to enroll in the major.

This hypothesis is supported by the Final Curriculum Presentation surveys. When presented with a typical curriculum, student interest dropped from an average of 3.556 on a scale of 1 to 5 to 3.358. The statistical T-Test, using a level of significance of 0.05, demonstrates that the drop is statistically significant with a p-value of 0.021. 21% of the interest levels of the student participants dropped and 70% remained the same. Put into real terms, 21 out of every 100 students that look into a Computer Science program that presents a typical curriculum may walk away from pursuing Computer Science as a major in college. It is interesting to note that the decline in the number of Computer Science and Computer Engineering degrees in 2008 was 20%. The largest drop in enrollment over the last ten years was between the years 2004 and 2005 when enrollment dropped 21%.

On a positive note, though the statistical T-Test did not demonstrate statistical significance in the change, the interest level of those presented with the Student-Focused curriculum rose from 3.663 to 3.669. 25% of the interest levels of the student participants rose while 61% remained the same. This means that 25 out of every 100 students has a little more interest in pursuing Computer Science as a major after looking at an attempt at a relevant curriculum.

These results validate the hypothesis that when presented with a more culturally relevant Computer Science curriculum, students will be encouraged and motivated to enroll in the major. One limitation to this study was the survey instrument itself. The "culturally relevant" curriculum presented to the student was not interactive. It was static and long. One could argue that the length of the curriculum may have disinterested students. If the curriculum could have been presented in a form familiar to students, a form that is dynamic, they could have investigated parts of the curriculum that intrigued them and ignored the portions that may have distracted them. If that hypothesis were explored and found to be true, the interest

level of students might rise significantly more than shown in this research.

6.1.2 College and University Curricular Presentation

Colleges and Universities have not changed the way they display Computer Science curriculum over the last ten years. When compared with earlier course catalogs, courses will have been added, but names of standard courses will remain the same.

This hypothesis is supported by the Curriculum Study that showed that 62% of the curriculum reviewed that had at least ten years of archived curricula available remained the same as that of ten years ago. 68% of the curriculum reviewed that had at least five years of archived curricula available remained the same as that of five years ago.

The Curriculum Study was not exhaustive and was not intended to indicate that the actual curriculum itself employed by the college or university is not up-to-date. The study focused on the presentation of the curriculum that prospective students might find. The content of the curricular courses was not evaluated except to correlate courses between schools.

6.1.3 Students and Technology

When asked about information technology, students react positively, enjoying its use.

This hypothesis is supported by the High School Student Technology Survey, the High School Student Focus Groups, as well as the Curriculum Presentation Surveys. The focus of this hypothesis was not specific to computers, but more broad to

technology as a whole. 92% of students who took part in the Technology Survey own a computer whether it be a desktop or laptop computer. 94% have cell phones and 79% use an MP3 player of some kind. In the section on technology terms, 73% indicated iPhones as being exciting. This indicates not only an acceptance to, but an embrace of newer technology.

In the High School Student Focus Groups, students indicated the benefits of technology ranging from communication to storing information. When discussing what excites them about computers, those that participated discussed communication; communication with the world around them; convenient communication as well as multiple possibilities to communicate. They also indicated the usefulness of computers as tools to help them with tasks they were performing from editing movies to help with homework.

In the Curriculum Presentation surveys, some of the open-ended responses from students evaluating the Typical Curriculum indicated they did not understand the curriculum; that they were overwhelmed or felt the curriculum was too difficult. Some indicated the curriculum was boring. This from students who typically enjoy using technology.

6.1.4 Curriculum and Job Postings

College Computer Science curricula do not correlate with job postings found on job search web sites nor with what is considered to be important areas in computing.

This hypothesis was supported by the Curriculum Study in conjunction with the Technology Job Review. In searching for jobs, technology jobs are categorized into different opportunities, unlike the Typical Computer Science Curriculum. Though

the hypothesis was found to be true, it may not be correct to assume that changing the terminology used in Computer Science curricula to those used in job advertisements will be beneficial. In fact, when presented with a curriculum that focused on job terminology, though the interest level remained above 3, which is the average in the range of 1 to 5, it still dropped slightly.

Companies have the luxury of focusing terminology to only those individuals who may understand it. When looking for someone to work in a specialized field, a company does not care to help those who do not understand the terminology in that specialized field, they simply care to find the person who does know it. Companies do not attempt to educate through job advertisement, they are looking for specific people. Colleges and Universities do not have that luxury. In the past when computers were a novelty, students enrolled in programs possibly due to the novelty.

6.2 Contribution to Knowledge

This dissertation explored the attitudes and perceptions of high school students toward technology, computers, and the study of Computer Science in college. The purpose of this study was not to identify the attitudes and perceptions of today's generation of high school students, but to use the attitudes and perceptions of the sample population to evaluate the effectiveness of how the Computer Science curriculum is currently being presented on the World Wide Web. This study shows that high school and college students' perceptions can contribute to improving the presentation of a curriculum on a college or university web site.

The data collected in this study specific to the presentation of the Computer Science curriculum, based on student responses, reveals the following:

- Concentrations help define the Computer Science curriculum. Though the ACM suggest five distinct computing disciplines, Computer Science (CS), Information Technology (IT), Information Systems (IS), Computer Engineering (CE), and Software Engineering (SE) [98], students do not perceive a difference between them [48]. Therefore, presenting a single computing major with concentrations that differentiate the distinct computing disciplines will lead prospective students to one major through which they can explore which specialty or concentration is of more interest to them.
- Providing language in the curricular presentation that provides real-world application interests students.
- Students are attracted to opportunities to use what they are learning outside of the classroom whether it is in clubs, organizations, or volunteer opportunities. Therefore, offering those opportunities as part of their educational experience will generate interest in the major.
- Connecting the technology high school students are familiar with to a computing curriculum will increase interest.

6.3 Other Avenues of Research

The goal of this research was to investigate the attitudes and perceptions of today's high school students toward computer-related curricula presented on the World Wide Web. The purpose of this research was not to develop the model curricular presentation that inspires students, but to show that, when presented a more relevant curriculum student interest increases. This research could be expanded to explore other methods of presenting the curriculum that might further increase interest. As stated earlier, presenting the curriculum in a dynamic fashion might

increase student interest.

During this investigation it became clear that some of the problems of attracting high school students to major in Computer Science stem from their experience with computer-related courses in high school. One avenue of further research would focus on high school computing curricula. What courses do high schools offer? Which are required? Do the courses that are required provide a broad overview of the computing field or a single aspect of computing? It would be interesting to investigate the number of graduates from different high schools that end up majoring in computer science and comparing the computing curricula of those with high enrollment rates to determine how they are inspiring students to continue with Computer Science. One hypothesis would be that those schools with a computing curriculum that gives the students a broad view of what can be studied in computer science will have more students enrolling in computer science in college. Those schools with curricula that misname courses, calling a Microsoft Applications course Computer Science, will have fewer students enrolling in computer science in college.

Another avenue of further research would be to develop a high school computer science course that would provide students with a broad overview of the possibilities of studying computer science. The course would add examples where value is added back to the community. One may conjecture that students would be excited about the course and would want to study computer science further in their college career. This course would also incorporate external speakers and/or field trips to expose students to people who do computer-related jobs. This would address the stereotype of geeks sitting in cubicles staring at a computer monitor all day.

Another avenue of further research would involve investigating the support high school computing teachers receive in teaching the latest technology. Teachers who receive a high level of support in teaching the latest technology might inspire

students to pursue a computing major. In the High School Student Focus Group study in this research, students indicated teachers being an influence in their choice of college major. Though this study did not pursue that further, it could be conjectured that those teachers excited about their field have a positive influence on their students.

The results of this dissertation show that for today's generation, the computer is no longer a novelty but an appliance. Therefore, simply indicating the existence of a Computer-related major isn't enough. Colleges and University Computer Science professors need to communicate the current novelty of Computer Science in a way this generation will respond to.

Appendix A

Computer Science Programs

www.manaraa.com

Registration		Req
ID	Course Name	Ind
CS 111	Introduction to Computer Science	R
CS 115	Introduction To Programming	R
CS 120	Programming I	R
CS 130	Programming Ii: Data Structures	R
CS 220	Computer Organization	R
CS 230	Object-oriented Programming	R
CS 315	Mobile Computing I	\mathbf{E}
CS 316	Mobile Computing II	\mathbf{E}
CS 320	Database Programming And Design	Ε
CS 330	The Human-computer Interface	\mathbf{E}
CS 332	Design And Analysis Of Algorithms	Ε
CS 341	Numerical Methods	\mathbf{E}
CS 352	Programming Languages	Ε
CS 356	Operating Systems	Ε
CS 365	Theory Of Computation	\mathbf{E}
CS 374	Software Engineering	Ε
CS 376	Software Testing And Quality Assurance	\mathbf{E}
CS 381	Computer Graphics	Ε
CS 420	Networks And Distributed Computing	\mathbf{E}
CS 442	Numerical Analysis	Ε
CS 467	Introduction To Artificial Intelligence	\mathbf{E}
CS 474	Object-oriented Design	\mathbf{E}
CS 495	Senior Seminar	R
IT 220	Introduction to Databases and Database Management	R
	Systems	
IT 221	Fundamentals of Networking and Data Communications	R

Abilene Christian University

Table A.1: Courses for the Computer Science major at Abilene Christian University

Amherst College

Registration		Req
ID	Course Name	Ind
11	Introduction To Computer Science I	R
12	Introduction To Computer Science II	R
16	Computer Systems I	R
20	Data Structures And Algorithms I	R
23	Programming Language Paradigms	\mathbf{C}
24	Artificial Intelligence	\mathbf{C}
26	Computer Systems II	R
28	Networks And Cryptography	\mathbf{C}
30	Data Structures And Algorithms II	R
34	Applied Algorithms	\mathbf{C}
37	Compiler Design	\mathbf{C}
38	Theoretical Foundations Of Computer Science	\mathbf{C}
39	Advanced Operating Systems	\mathbf{C}
40	Seminar In Computer Science	\mathbf{C}
5	Demystifying The Internet	${ m E}$
77	Senior Departmental Honors	\mathbf{C}
97	Special Topics	С

 Table A.2: Courses for the Computer Science major at Amherst College

260

Bethel University

Registration	1	Req
ID	Course Name	Ind
COS100	Introduction To Programming	R
$\cos 105$	Computer Science 1	R
$\cos 205$	Scientific Computing	Ε
COS212	Computer Science 2	R
COS214	Computer Systems	R
COS216	Data Structures And Objects	R
$\cos 301$	Operating Systems And Computer Architecture	R
COS313	Database Systems	R
COS318	Web Programming	R
$\cos 337$	K Behavioral Robotics	Ε
$\cos 344$	Numerical Methods	\mathbf{C}
$\cos 371$	Organization Of Programming Languages	R
$\cos 376$	Operations Research	\mathbf{C}
$\cos 377$	Software Engineering	R
$\cos 386$	Data Communications And	R
$\cos 389$	Artificial Intelligence	R
COS490	Topics In Computer Science	R

 Table A.3: Courses for the Computer Science major at Bethel University

Registration		Req
ID	Course Name	Ind
C S 100	Fundamentals Of Computing And Information	E
C S 124	Introduction To Computer Systems	R
C S 142	Introduction To Computer Programming	R
C S 235	Data Structures And Algorithms	R
C S 236	Discrete Structures	R
C S 240	Advanced Programming Concepts	R
C S 252	Introduction To Computational Theory	R
C S 312	Algorithm Analysis	R
C S 330	Concepts Of Programming Languages	R
C S 340	Software Design And Testing	R
C S 345	Operating Systems Design	R
C S 360	Internet Programming	R
C S 404	Ethics And Computers In Society	R
C S 405	Creating And Managing A Software Business	\mathbf{E}
C S 412	Linear Programming And Convex Optimization	\mathbf{E}
C S 418	Bioinformatics	\mathbf{E}
C S 428	Software Engineering	\mathbf{E}
C S 431	Algorithmic Languages And Compilers	Ε
C S 450	Introduction To Digital Signal And Image Processing	\mathbf{E}
C S 452	Database Modeling Concepts	Ε
$\rm C~S~453$	Fundamentals Of Information Retrieval	\mathbf{E}
$\rm C~S~455$	Computer Graphics	\mathbf{E}
C S 456	Introduction To User Interface Software	\mathbf{E}
C S 460	Computer Communications And Networking	\mathbf{E}
C S 462	Large-scale Distributed System Design	\mathbf{E}
C S 465	Computer Security	\mathbf{E}
C S 470	Introduction To Artificial Intelligence	\mathbf{E}
C S 476	Introduction To Data Mining	Ε
C S 478	Tools For Machine Learning And Data Mining	\mathbf{E}
C S 479	Natural Language Processing	Ε
C S 484	Parallel Processing	Ε

Brigham Young University

Table A.4: Courses for the Computer Science major at Brigham Young University

Bucknell University

Registration		Req
ID	Course Name	Ind
CSCI 180	Introduction To A Microcomputer Environment	Е
CSCI 202	Computing For Scientists	Ε
CSCI 203	Introduction To Computer Science I	R
CSCI 204	Introduction To Computer Science II	R
CSCI 206	Computer Organization And Programming	R
CSCI 208	Programming Language Design	R
CSCI 240	Computers And Society	R
CSCI 278	Computer Science Individual Study	${ m E}$
CSCI 305	Introduction To Database	\mathbf{C}
CSCI 311	Algorithms And Data Structures	R
CSCI 315	Operating Systems Design	R
CSCI 320	Computer Architecture	\mathbf{C}
CSCI 331	Compiler Optimization	\mathbf{C}
CSCI 334	Graphs, Their Algorithms, And Software Engineering	С
CSCI 335	Web Information Retrieval	\mathbf{C}
CSCI 341	Theory Of Computation I	R
CSCI 350	Introduction To Analysis Of Algorithms	\mathbf{C}
CSCI 355	Distributed Computing	\mathbf{C}
CSCI 362	Computer And Network Security	\mathbf{C}
CSCI 363	Computer Networks	\mathbf{C}
CSCI 367	Computer Graphics	\mathbf{C}
CSCI 376	Computer Science Honors Thesis	\mathbf{C}
CSCI 378	Individual Study In Computer Science	\mathbf{C}
CSCI 379	Topics In Computer Science	\mathbf{C}
CSCI 475	Senior Design I	\mathbf{C}
CSCI 476	Senior Design II	\mathbf{C}
CSCI 479	Capstone Computer Science Design	R

Table A.5: Courses for the Computer Science major at Bucknell University

Registration		Req
ID	Course Name	Ind
CS 10	The Beauty And Joy Of Computing	Е
CS 149	Introduction To Embedded Systems	Ε
$CS \ 150$	Components And Design Techniques For Digital Systems	\mathbf{C}
CS 152	Computer Architecture And Engineering	\mathbf{C}
CS 160	User Interface Design And Development	\mathbf{C}
CS 161	Computer Security	\mathbf{C}
CS 162	Operating Systems And System Programming	R
CS 164	Programming Languages And Compilers	\mathbf{C}
CS 169	Software Engineering	С
CS 170	Efficient Algorithms And Intractable Problems	R
CS 172	Computability And Complexity	\mathbf{E}
CS 174	Combinatorics And Discrete Probability	Ε
CS 182	The Neural Basis Of Thought And Language	\mathbf{E}
CS 184	Foundations Of Computer Graphics	\mathbf{C}
CS 186	Introduction To Database Systems	\mathbf{C}
CS 188	Introduction To Artificial Intelligence	\mathbf{C}
CS 194	Special Topics	Ε
CS 195	Social Implications Of Computer Technology	Ε
CS 3	Introduction To Symbolic Programming	\mathbf{E}
CS 61A	The Structure And Interpretation Of Computer Programs	R
CS 61B	Data Structures	R
CS 61C	Machine Structures	R
CS 70	Discrete Mathematics And Probability Theory	R
CS 84	Sophomore Seminar	Ε
CS 98	Directed Group Study	Ε
CS 99	Individual Study And Research For Undergraduates	Ε
CS 9A	Matlab For Programmers	Ε
CS 9B	Pascal For Programmers	Ε
CS 9C	C For Programmers	Ε
CS 9D	Scheme And Functional Programming For Programmers	\mathbf{E}
CS 9E	Productive Use Of The Unix Environment	Ε
CS 9F	C++ For Programmers	Ε
CS 9G	Java For Programmers	Ε
CS 9H	Python For Programmers	Ε
CS C191	Quantum Information Science And Technology	Ε

California Berkely, University of

Table A.6: Courses for the Computer Science major at California Berkely, University of

California Berkely, University of (page 2)

Registration		Req
ID	Course Name	Ind
CS C195	Social Implications Of Computer Technology	Е
CS H195	Honors Social Implications Of Computer Technology	${ m E}$
CS H196A-H196B	Senior Honors Thesis Research	E

 Table A.7: Courses for the Computer Science major at California Berkely, University of (Page 2)

Calvin College

Registration		Req
ID	Course Name	Ind
CS104	Applied C++	Е
CS106	Introduction To Scientific Computation And Modeling.	Ε
CS108	Introduction To Computing	R
CS112	Introduction To Data Structures	R
CS195	Introductory Computing Seminar	R
CS212	Data Structures And Algorithms	R
CS214	Programming Language Concepts	R
CS216	Programming Challenges	Ε
CS232	Operating Systems And Networking	R
CS262	Software Engineering	R
CS295	Computing Seminar	R
CS312	Logic, Computability And Complexity	С
CS320	Advanced Computer Architecture	С
CS324	Cross Cultural Engagement Across The Digital Divide	Ε
CS332	Advanced Computer Networks	С
CS342	Database Management Systems	С
CS344	Artificial Intelligence	С
CS352	Computer Graphics	\mathbf{C}
CS372	Numerical Analysis	С
CS374	High Performance Computing	С
CS382	Special Topics In Computer Science: Compiler Design	С
CS384	Perspectives On Computing	R
CS386	Computer Security	С
CS390	Independent Study	Ε
CS394	Senior Internship In Computing	Ε
CS396	Senior Project In Computing	R
CS398	Senior Project In Computing II	R

 Table A.8: Courses for the Computer Science major at Calvin College

Registration		Req
ID	Course Name	Ind
15-050	Study Abroad	E
15-075	Computer Science Co-op	\mathbf{E}
15-090	Computer Science Practicum	Ε
15-100	Introductory/intermediate Programming	Ε
15 - 105	Principles Of Computation	Ε
15-111	Intermediate/advanced Programming	R
15-123	Effective Programming In C And Unix	R
15-211	Fundamental Data Structures And Algorithms	R
15-212	Principles Of Programming	R
15-213	Introduction To Computer Systems	R
15-221	Technical Communication For Computer Scientists	Ε
15 - 251	Great Theoretical Ideas In Computer Science	R
15-295	Special Topic: Competition Programming And Problem	Ε
	Solving	-
15-312	Foundations Of Programming Languages	E
15-313	Foundations Of Software Engineering	E
15-317	Constructive Logic	E
15-321	Research Methods For Experimental Computer Science	Ε
15-322	Introduction To Computer Music	E
15-323	Music Systems And Information Processing	Ε
15 - 354	Computational Discrete Mathematics	E
15 - 355	Modern Computer Algebra	\mathbf{E}
15 - 359	Special Topic: Probability And Computing	\mathbf{E}
15-381	Artificial Intelligence: Representation And Problem Solving	\mathbf{E}
15-384	Robotic Manipulation	\mathbf{E}
15 - 385	Computer Vision	\mathbf{E}
15-386	Computational Neuroscience: Visual Computation In Biolog- ical Systems	Ε
15-390	Entrepreneurship For Computer Science	Ε
15-391	Technology Consulting In The Community	Ε
15-392	Special Topic: Secure Programming	Ε
15-410	Operating System Design And Implementation	Ε
15-411	Compiler Design	Ε
15-412	Operating System Practicum	$\overline{\mathrm{E}}$
15-413	Software Engineering	Ē
15-414	Bug Catching: Automated Program Verification and Testing	Ē
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

Carnegie Mellon University

Table A.9: Courses for the Computer Science major at Carnegie Mellon University

Registration		Req
ID	Course Name	Ind
15-415	Database Applications	Е
15-418	Parallel Computer Architecture and Programming	\mathbf{E}
15-421	Web Commerce, Security and Privacy	${ m E}$
15-437	Web Applications Development	\mathbf{E}
15-441	Computer Networks	${ m E}$
15-451	Algorithm Design And Analysis	R
15 - 453	Formal Languages And Automata	${ m E}$
15-462	Computer Graphics	${ m E}$
15-463	Computational Photography	${ m E}$
15-464	Technical Animation	${ m E}$
15-465	Animation Art And Technology	${ m E}$
15-466	Computer Game Programming	\mathbf{E}
15-482	Human Language Technologies	${ m E}$
15-485	Computational Perception	${ m E}$
15-490	Special Topic: Computational Neuroscience	E

Carnegie Mellon University (page 2)

 Table A.10: Courses for the Computer Science major at Carnegie Mellon University (Page 2)

Cedarville University

Registratio	n	Req
ID	Course Name	Ind
CS-1210	C++ Programming	R
CS-1220	Object-oriented Design Using C++	R
CS-2210	Data Structures Using Java	R
CS-3210	Programming Language Survey	R
CS-3310	Operating Systems	R
CS-3410	Algorithms	R
CS-3510	Compiler Theory And Practice	R
CS-3610	Database Organization And Design	R
CS-3920	Computer Science Internship	\mathbf{C}
CS-3950	Topics In Computer Science	\mathbf{C}
CS-3980	Independent Study In Computer Science	\mathbf{C}
CS-4220	Web Applications	R
CS-4320	Network Security	\mathbf{C}
CS-4410	Parallel Computing	\mathbf{C}
CS-4710	Computer Graphics	\mathbf{C}
CS-4810	Software Engineering I	R
CS-4820	Software Engineering II	R
CS-4950	Advanced Topics In Computer Science	\mathbf{C}
CS-4980	Independent Study In Computer Science	\mathbf{C}

Table A.11: Courses for the Computer Science major at Cedarville University

Registratio	n	Req
ID	Course Name	Ind
CS 171	Introduction To Computer Science	R
CS 172	Fundamentals Of Computer Science	R
CS 234	Data Structures	R
CS 240	Introduction To Bioinformatics	${ m E}$
CS 295	Data Communications And	R
CS 360	Object Oriented Design	R
CS 370	Operating Systems	R
CS 400	Internship In Computer Science	R
CS 440	Algorithms	R
CS 460	Topics In Computer Science	${ m E}$
CS 471	Data Base Design	R
CS 481	Computer Science Project I	R
CS 482	Computer Science Project II	R

Christian Brothers University

Table A.12: Courses for the Computer Science major at Christian Brothers University

Cornell University

Registration		Req
ID	Course Name	Ind
CS 1109	Fundamental Programming Concepts	Е
CS 1110	Introduction To Computing Using Java	\mathbf{C}
CS 1112	Introduction To Computing Using Matlab	\mathbf{C}
CS 1114	Introduction To Computing Using Matlab And Robotics	\mathbf{C}
CS 1130	Transition To Object-oriented Programming	Ε
CS 1132	Transition To Matlab	Ε
CS 1300	Introduction To Programming Web Applications	Ε
CS 1610	Computing In The Arts	Ε
$CS \ 1620$	Visual Imaging In The Electronic Age	Ε
CS 1710	Introduction To Cognitive Science	Ε
CS 2022	Introduction To C	Ε
CS 2024	C++ Programming	Ε
CS 2026	Introduction To C#	\mathbf{E}
$CS \ 2042$	Unix Tools	Ε
CS 2044	Advanced Unix Programming And Tools	Ε
CS 2110	Object-oriented Programming And Data Structures	\mathbf{C}
CS 2800	Discrete Structures	R
CS 2850	Networks	\mathbf{E}
CS 3110	Data Structures And Functional Programming	R
CS 3410	Systems Programming	\mathbf{C}
CS 3420	Computer Organization	\mathbf{C}
CS 3740	Computational Linguistics	\mathbf{E}
CS 3758	Autonomous Mobile Robots	\mathbf{E}
CS 3810	Introduction to Theory of Computing	\mathbf{E}
CS 4110	Programming Languages and Logics	R
$CS \ 4120$	Introduction to Compilers	\mathbf{E}
CS 4121	Practicum in Compilers	С
CS 4210	Numerical Analysis and Differential Equations	\mathbf{E}
CS 4220	Numerical Analysis: Linear and Nonlinear Problems	\mathbf{E}
CS 4300	Information Retrieval	\mathbf{E}
CS 4302	Web Information Systems	Ε
CS 4320	Introduction to Database Systems	Ε
$CS \ 4321$	Practicum in Database Systems	\mathbf{C}
$CS \ 4410$	Operating Systems	Ε
CS 4411	Practicum in Operating Systems	\mathbf{C}
CS 4420	Computer Architecture	Ε

 Table A.13: Courses for the Computer Science major at Cornell University

Registration	L	Req
ID	Course Name	Ind
CS 4450	Computer Networks	С
CS 4520	Introduction to Bioinformatics	\mathbf{E}
CS 4620	Computer Graphics I	${ m E}$
$CS \ 4621$	Computer Graphics Practicum	\mathbf{C}
CS 4670	Introduction to Computer Vision	\mathbf{E}
CS 4700	Foundations of Artificial Intelligence	${ m E}$
CS 4701	Practicum in Artificial Intelligence	\mathbf{C}
CS 4740	Introduction to Natural Language Processing	${ m E}$
CS 4758	Robot Learning	\mathbf{E}
CS 4759	Autonomous Mobile Robots	${ m E}$
CS 4780	Machine Learning	\mathbf{E}
CS 4782	Probabilistic Graphical Models	${ m E}$
CS 4812	Quantum Computation	\mathbf{E}
CS 4820	Introduction to Analysis of Algorithms	R
$CS \ 4830$	Introduction to Cryptography	\mathbf{E}
$CS \ 4850$	Mathematical Foundations for the Information Age	\mathbf{E}
CS 4860	Applied Logic	${ m E}$

Cornell University (page 2)

Table A.14: Courses for the Computer Science major at Cornell University (Page 2)

Duke University

Registration		Req
ID	Course Name	Ind
1	Principles Of Computer Science	E
100	Program Design And Analysis II	R
102	Discrete Math For Computer Science	R
104	Computer Organization And Programming	R
108	Software Design And Implementation	R
110	Introduction To Operating Systems	R
111	Introduction To Computer Modeling	Ε
114	Introduction To Computer Networks	Ε
116	Introduction To Database Systems	\mathbf{E}
120L	Introduction To Switching Theory And Logic Design	\mathbf{E}
122S	Constructing Immersive Virtual Worlds	\mathbf{E}
124	Computer Graphics	\mathbf{E}
130	Introduction To The Design And Analysis Of Algorithms	R
140	Mathematical Foundations Of Computer Science	R
148	Logic And Its Applications	Ε
149S	Problem Solving Seminar	\mathbf{E}
150	Introduction To Numerical Methods And Analysis	R
150S	Introduction To Numerical Methods And Analysis	\mathbf{E}
160	Introduction To Computational Genomics	\mathbf{E}
170	Introduction To Artificial Intelligence	\mathbf{E}
173	Computational Microeconomics	\mathbf{E}
181S	Computer Science Seminar	\mathbf{E}
182S	Technical And Social Analysis Of Information And The Internet	Ε
189S	Computer Science Education Research Seminar	Ε
18S	Introduction To Problem Solving	Ē
190	Duke-administered Study Abroad: Advanced Special Topics	Ē
100	In Computer Science	
191	Research Independent Study	Ε
192	Research Independent Study	Ε
193	Independent Study	Ε
195	Computer Science Internship	Ε
196	Topics In Computer Science	Ε
196S	Topics In Computer Science	Ε
197	Topics In Computer Science	Ε
210	Operating Systems	E

 Table A.15: Courses for the Computer Science major at Duke University

Registration		Req
ID	Course Name	Ind
212	Distributed Information Systems	Е
214	Computer Networks And Distributed Systems	\mathbf{E}
215	Wireless Networking And Mobile Computing	\mathbf{E}
216	Data-intensive Computing Systems	\mathbf{E}
219	Statistical Data Mining	\mathbf{E}
220	Advanced Computer Architecture I	\mathbf{E}
221	Advanced Computer Architecture II	\mathbf{E}
225	Fault-tolerant And Testable Computer Systems	\mathbf{E}
226	Probability For Electrical And Computer Engineers	\mathbf{E}
230	Design And Analysis Of Algorithms	\mathbf{E}
232	Approximation Algorithms	Ε
234	Computational Geometry	Ε
235	Topics In Data Compression	Ε
236	Computational Topology	\mathbf{E}
237	Randomized Algorithms	Ε
240	Computational Complexity	Ε
250	Numerical Analysis	Ε
258	Introduction To Computational Science	Ε
261	Computational Sequence Biology	Ε
262	Computational Systems Biology	Ε
263	Algorithms In Structural Biology And Biophysics	\mathbf{E}
263B	Computational Structural Biology	\mathbf{E}
264	Nonlinear Dynamics	Ε
270	Artificial Intelligence	Ε
271	Machine Learning	Ε
274	Introduction To Computer Vision	\mathbf{E}
296	Advanced Topics In Computer Science	Ε
297	Advanced Topics In Computer Science	\mathbf{E}
4	Programming And Problem Solving	Ε
49S	First-year Seminar	Ε
4FCS	Introduction To Computational Genomics And Computer	\mathbf{E}
	Science	
6	Introduction To Computer Science	\mathbf{E}
6L	Introduction To Computer Science	Е
72	Artificial Life, Culture, And Evolution	Ε
82	Technical And Social Analysis Of Information And The Internet	Е

Duke University (page 2)

Table A.16: Courses for the Computer Science major at Duke University (Page 2)

Registration		Req
ID	Course Name	Ind
89S	Computer Science Education Research Seminar	Ε
90	Duke-administered Study Abroad: Special Topics In Com-	\mathbf{E}
	puter Science	
96	Topics In Computer Science	\mathbf{E}
96S	Topics In Computer Science	\mathbf{E}
97S	Minds And Computers: Foundations Of Artificial Intelligence	Е

Duke University (page 3)

Table A.17: Courses for the Computer Science major at Duke University (Page 3)

Registration	1	Req
ID	Course Name	Ind
CS 110	Introduction To Computer Science	E
CS 120	Introduction To Programming: Visual Basic	${ m E}$
CS 220	Intermediate Programming: Java	R
CS 230	Networking And Data Communications	R
CS 250	Architecture And Operating Systems	R
CS 270	Databases And Information Management	R
CS 320	Data Structures	R
CS 333	Topics In Computing	${ m E}$
CS 340	Analysis Of Algorithms	R
CS 350	System Administration	${ m E}$
CS 370	Software Engineering	${ m E}$
CS 420	Programming Languages	R
CS 470	Project Management	${ m E}$
CS 488	Computer Science Internship	${ m E}$
CS 499	Independent Study/Research	E

Eastern Mennonite University

 Table A.18: Courses for the Computer Science major at Eastern Mennonite University

Hendrix College

Registration		Req
ID	Course Name	Ind
CSCI 115	Computing And The Internet	E
CSCI 135	Robotics Explorations Studio	Ε
CSCI 150	Foundations Of Computer Science I	R
CSCI 151	Foundations Of Computer Science II	R
CSCI 230	Computing Systems Organization	R
CSCI 250	Programming Practicum	R
CSCI 280	Algorithms & Problem Solving Paradigms	R
CSCI 330	Computer Architecture	\mathbf{C}
CSCI 335	Artificial Intelligence	\mathbf{C}
CSCI 340	Database Systems	\mathbf{C}
CSCI 350	Software Engineering	\mathbf{C}
CSCI 360	Survey Of Programming Languages	\mathbf{C}
CSCI 380	Theory Of Computation	\mathbf{C}
CSCI 385	Scientific Computing	\mathbf{C}
CSCI 397	Cross-disciplinary Project	\mathbf{C}
CSCI 410	Technical Communication And Analysis	R
CSCI 420	Operating Systems And Concurrent Computing	\mathbf{C}
CSCI 490	Advanced Topics In Computer Science	\mathbf{C}
CSCI 497	Senior Seminar	С

 Table A.19: Courses for the Computer Science major at Hendrix College

Registration Req Course Name Ind ID Е 100 Freshman Orientation Ε 101 Intro Computing: Engrg & Sci Ε 105Intro Computing: Non-tech Е 110Programming Laboratory R 125Intro To Computer Science 173R Discrete Structures 196Freshman Honors Ε Е 199Undergraduate Open Seminar Е 210 Ethical & Professional Issues R 225**Data Structures** 231 Computer Architecture I R 232R Computer Architecture II R 241System Programming 242 **Programming Studio** R Е 296Honors Course Numerical Methods I R 357 R 373 Theory Of Computation 397 Individual Study Ε Е 398 Special Topics 410 Text Information Systems Е 411 Database Systems Е Ε 412 Introduction To Data Mining Е 414 Multimedia Systems Ε 418 Interactive Computer Graphics Е 419**Production Computer Graphics** 420 Parallel Progrmg: Sci & Engrg Ε Е 421 Progrmg Languages & Compilers Е 422 Programming Language Design Ε 423 **Operating Systems Design** Е 424 Real-time Systems 425Е **Distributed Systems** Е 426Compiler Construction 427 Е Software Engineering I 428 Software Engineering II Е Software Engineering Ii, Acp 429Ε Е 431 Embedded Systems 433Computer System Organization Ε **Communication Networks** 438Е

Illinois, University of

Table A.20: Courses for the Computer Science major at Illinois, University of

Registration		Req
ID	Course Name	Ind
440	Artificial Intelligence	Е
446	Machine Learning	Ε
450	May Not Receive Additional	Ε
450	Numerical Analysis	Ε
457	Numerical Methods II	R
460	Security Laboratory	\mathbf{E}
461	Computer Security I	\mathbf{E}
463	Computer Security II	\mathbf{E}
465	User Interface Design	\mathbf{E}
466	Introduction To Bioinformatics	\mathbf{E}
473	Fundamental Algorithms	\mathbf{E}
475	Formal Models Of Computation	\mathbf{E}
476	Program Verification	\mathbf{E}
477	Formal Software Devel Methods	\mathbf{E}
491	Seminar	\mathbf{E}
492	Senior Project I	\mathbf{E}
493	Or Cs 494. Cs 492 Combined With Cs 493 Fulfills The	\mathbf{E}
	Advanced Composition Requirement. No Graduate	
493	Senior Project Ii, Acp	\mathbf{E}
494	Senior Project II	\mathbf{E}
498	Special Topics	\mathbf{E}
499	Senior Thesis	Ε

Illinois, University of (page 2)

Table A.21: Courses for the Computer Science major at Illinois, University of (Page 2)

Registration		Req
ID	Course Name	Ind
600.101	Computer Fluency	Е
600.102	Cs Foundations	\mathbf{E}
600.104	Computer Ethicstheory And Practice	R
600.105	M&ms: Freshman Experience	Ε
600.106	Pre-programming: Algorithmic Thinking	Ε
600.107	Introduction To Programming In Java	R
600.108	Introduction To Programming Lab	Ε
600.120	Intermediate Programming	R
600.145	Introduction To Computer-integrated Surgery	Ε
600.146	Introduction To Medical Imaging	Ε
600.161	Exploring Vision In The Real World	Ε
600.202	Introduction To Public Health And Biomedical Informatics	Ε
600.211	Unix Systems Programming	Ε
600.226	Data Structures	R
600.245	Foundations Of Computer Integrated Surgery	Ε
600.255	Introduction To Video Game Design	Ε
600.256	Introduction To Video Game Design Lab	Ε
600.271	Automata And Computation Theory	R
600.315	Database Systems	Ε
600.316	Transaction Processing Systems	\mathbf{E}
600.318	Operating Systems	Ε
600.319	Storage Systems	Ε
600.320	Parallel Programming	Ε
600.321	Object-oriented Software Engineering	\mathbf{C}
600.324	Network Security	\mathbf{E}
600.325	Declarative Methods	\mathbf{E}
600.328	Compilers And Interpreters	\mathbf{E}
600.333	Computer System Fundamentals	R
600.335	Artificial Intelligence	Ε
600.336	Algorithms For Sensor-based Robotics	Ε
600.337	Distributed Systems	Ε
600.341	Basics Of Applied Cryptography	\mathbf{E}
600.344	Computer Network Fundamentals	\mathbf{E}
600.355	Video Game Design Project	\mathbf{E}
600.357	Computer Graphics	\mathbf{E}
600.361	Computer Vision	Ε
600.363	Introduction To Algorithms	Ε

Johns Hopkins University

 Table A.22: Courses for the Computer Science major at Johns Hopkins University

Johns Hopkins University (page 2)

Registration	L	Req
ID	Course Name	Ind
600.392	Senior Design Project	С

Table A.23: Courses for the Computer Science major at Johns Hopkins University
(Page 2)

Registration ID Course Name CS 100 The Computer Science Profession CS 101 Introduction To Computing I CS 115 Introduction To Computer Programming CS 215 Introduction To Program Design, Abstraction, And Problem Solving CS 216 Introduction To Software Engineering CS 221 First Course In Computer Science For Engineers CS 275 **Discrete** Mathematics CS 315 Algorithm Design And Analysis CS 316 Web Programming CS 321 Introduction To Numerical Methods CS 335 Graphics And Multimedia CS 340 Applicable Algebra CS 375 Logic And Theory Of Computing CS 380 Microcomputer Organization CS 383 Introduction To Embedded Systems

Independent Work In Computer Science

Numerical Solutions Of Equations

Introduction to Operating Systems

Senior Design Project

Kentucky, University of

Table A.24: Courses for the Computer Science major at Kentucky, University of

CS 395

CS 422 CS 470G

CS 499

Req

Ind

R E

R

R

R

R

R

R

R

R

R

R

Ε

Ε

Е

Е

Ε

Е

Ε

Kettering University

Registratio	on and the second se	Req
ID	Course Name	Ind
CE 210	Digital Systems I	R
CE 320	Microcomputers I	R
CS-101	Computing And Algorithms I	R
CS-102	Computing And Algorithms II	R
CS-202	Systems Programming Concepts	R
CS-203	Computing & Algorithms III	R
CS-211	Discrete Mathematics	R
CS-300	The Computing Professional	R
CS-312	Theory Of Computation	R
CS-320	Computer Graphics	${ m E}$
CS-331	Programming Language Design	${ m E}$
CS-341	Web Software Tools	${ m E}$
CS-385	Introduction To Game Design	${ m E}$
CS-415	Cryptography	${ m E}$
CS-420	Multimedia Design	${ m E}$
CS-425	Parallel Models And Algorithms	${ m E}$
CS-431	Compiler Design And Construction	${ m E}$
CS-435	Functional Languages And Parsing	R
CS-451	Operating Systems	R
CS-455	Computer And Network Security	${ m E}$
CS-458	Computer And Network Forensics	${ m E}$
CS-459	Secure Software	${ m E}$
CS-461	Database Systems	${ m E}$
CS-465	Information Retrieval And Data Mining	${ m E}$
CS-471	Software Engineering	R
CS-481	Artificial Intelligence	${ m E}$
CS-485	Advanced Game Development	${ m E}$
CS-541	Web Technology	${ m E}$
CS-571	Software Requirements Engineering	${ m E}$

 Table A.25: Courses for the Computer Science major at Kettering University

Linfield College

Registration		Req
ID	Course Name	Ind
COMP-101	Fundamentals Of Information Systems Tec	Е
COMP-120	Microcomputer Applications	Ε
COMP-121	Introduction To The Internet And World Wide Web	Ε
COMP-131	Computers In Modern Society	\mathbf{E}
COMP-152	Programming & Object Structures	Ε
COMP-160	Introduction To Programming: Functions	R
COMP-161	Beginning Programming: Objects	R
COMP-180	Intermediate Programming: Data Abstractions	R
COMP-181	Intermediate Programming: Algorithm Design And Analysis	R
COMP-250	Database Program Development	Ε
COMP-260	Database Management Systems	R
COMP-270	Advanced Topics In Algorithms, Complexity And Intelligent	R
	Systems	
COMP-302	Software Engineering	\mathbf{E}
COMP-305	Software Engineering	R
COMP-310	Networks And Web Application Development	\mathbf{E}
COMP-330	Operating Systems And Networking	R
COMP-375	Computer Graphics And Animation	R
COMP-377	Computer Architecture	R
COMP-400	Applied Software Development Project	\mathbf{E}
COMP-450	Database Administration	\mathbf{E}
COMP-480	Independent Study	\mathbf{E}
$\operatorname{COMP-485}$	Advanced Topics In Computer Science	R
COMP-487	Software Engineering Internship	\mathbf{E}
COMP-490	Capstone Project	R

 Table A.26: Courses for the Computer Science major at Linfield College

Lyndon State College

Registration		Req
ID	Course Name	Ind
CIS 1050	Computer Operation Systems And Spreadsheets	Е
CIS 1060	Introduction To Databases	Ε
CIS 1090	Object Oriented Problem Solving	R
CIS 1090	Object Oriented Problem Solving, Is Strongly Recommended Before Taking This Course	Ε
CIS 1210	Concepts Of Word Processing	\mathbf{E}
CIS 1220	Concepts Of The Internet And Www	\mathbf{E}
CIS 1240	Simple Computer Graphics	\mathbf{E}
CIS 1247	Concepts Of Desktop Publishing	\mathbf{E}
CIS 1310	Methods Of Computer Presentations	\mathbf{E}
CIS 2011	Visual Basic Programming	\mathbf{E}
CIS 2032	C++ Programming	R
CIS 2060	Programming With Fortran	\mathbf{E}
CIS 2101	Introduction To Unix	\mathbf{E}
CIS 2141	Programming Internet And Web Applications Part I	R
CIS 2142	Advanced Visual Basic	R
CIS 2271	Java Programming	R
CIS 2271	Java Programming, Is Strongly Recommended Before Taking This Course	Ε
CIS 2279	Introduction To Perl Programming	Ε
CIS 2290	Introduction To Python	Ε
CIS 2330	Database Systems	R
CIS 2990	Portfolio	\mathbf{E}
CIS 3050	Algorithms And Data Structures	R
CIS 3110	Networking	R
CIS 3120	Programming Internet And Web Applications Part II	\mathbf{E}
CIS 3810	Cooperative Field Work	\mathbf{E}
CIS 4040	Computer Security	R
CIS 4060	Advanced Web Tools	\mathbf{E}
CIS 4120	Systems Analysis And Design	R
CIS 4710	Special Studies In Computer Science	\mathbf{E}
CIS 4810	Internship In Computer Science	R
CIS 4990	Portfolio	R

 Table A.27: Courses for the Computer Science major at Lyndon State College

Lyon College

Registration		Req
ID	Course Name	Ind
CSC 110	Programming With Visual Basic	E
CSC 120	Computer Information Systems	Ε
CSC 140	Introduction To Programming I	R
CSC 145	Introduction To Programming II	R
CSC 235	Data Structures And Algorithms I	R
CSC 245	Introduction To Digital Logic	${ m E}$
CSC 255	Computer Architecture With Assembly Language	R
CSC 260	Data Structures And Algorithms II	R
CSC 304	Project In Software Design And Engineering	\mathbf{E}
CSC 310	Mathematical Foundations Of Computer Science	R
CSC 320	Programming Languages	R
CSC 330	Database Theory And Application	${ m E}$
CSC 380	Parallel Programming	${ m E}$
CSC 410	Data Communications And Networks	${ m E}$
CSC 415	Numerical Analysis	${ m E}$
CSC 420	Operating Systems	R
CSC 450	Independent Study	\mathbf{E}
CSC 482	Special Topics In Computer Science	E

 Table A.28: Courses for the Computer Science major at Lyon College

Registration		Req
ID	Course Name	Ind
Cos 103	Introduction To Information Technology	Е
$\cos 111$	Introduction To Computer Science	R
$\cos 125$	Internet Fundamentals And Webpage Design	\mathbf{C}
$\cos 130$	Desktop Publishing	${ m E}$
$\cos 206$	Survey Of Information Assurance And Security	\mathbf{C}
$\cos 233$	Macromedia Flash Development	${ m E}$
$\cos 260$	Introduction To Programming	R
$\cos 272$	Computer Graphic Art	${ m E}$
$\cos 310$	Computer Programming – Fortran	\mathbf{C}
$\cos 320$	Computer Programming – Cobol	\mathbf{C}
$\cos 325$	Computer Programming – C++	\mathbf{C}
$\cos 327$	Computer Programming – Visualbasic	\mathbf{C}
$\cos 333$	Systems Analysis And Design	\mathbf{C}
$\cos 338$	Networking	\mathbf{C}
$\cos 346$	Databases	\mathbf{C}
$\cos 360$	Computer Organization/assembly Language	\mathbf{C}
$\cos 370$	Operating Systems	${ m E}$
$\cos 381$	Internet/intranet Programming	${ m E}$
$\cos 397$	Computer Management Internship	${ m E}$
$\cos 420$	Internet And Intranet Architecture	${ m E}$
Cos 430	Cryptography	E

Maine at Fort Kent, University of

 Table A.29: Courses for the Computer Science major at Maine at Fort Kent, University of

Registration		Req
ID	Course Name	Ind
CMPSCI 105	Computer Literacy (r2)	Е
CMPSCI 120	Introduction To Problem Solving With The Internet	Ε
CMPSCI 121	Introduction To Problem Solving With Computers (r2)	R
CMPSCI 187	Programming With Data Structures (r2)	R
CMPSCI 201	Architecture And Assembly Language	R
CMPSCI 220	Programming Methodology	С
CMPSCI 240	Reasoning About Uncertainty	С
$\mathbf{CMPSCI}\ 250$	Introduction To Computation	С
CMPSCI 287	Programming Language Paradigms	Ε
CMPSCI 291	Computer Systems Principles	С
CMPSCI 305	Social Issues In Computing	R
CMPSCI 311	Introduction To Algorithms	Ε
CMPSCI 320	Introduction To Software Engineering	Ε
CMPSCI 365	Digital Forensics	\mathbf{E}
CMPSCI 377	Operating Systems	Ε
CMPSCI 383	Artificial Intelligence	Ε
CMPSCI 401	Formal Language Theory	\mathbf{E}
CMPSCI 446	Search Engines	Ε
$\mathbf{CMPSCI}\ 453$	Computer Networks	\mathbf{E}
CMPSCI 520	Software Engineering: Synthesis And Development	Ε
CMPSCI 529	Software Engineering Project Management	E

Massachusetts Amherst, University of

 Table A.30: Courses for the Computer Science major at Massachusetts Amherst, University of

Registration		Req
ID	Course Name	Ind
101	Computing Concepts And Competencies	E
131	Technical Computing And Problem Solving	${ m E}$
231	Introduction To Programming I	R
232	Introduction To Programming II	R
240	Informatics	${ m E}$
260	Discrete Structures In Computer Science	R
290	Independent Study In Computer Science	${ m E}$
291	Selected Topics In Computer Science	${ m E}$
320	Computer Organization And Architecture	R
331	Algorithms And Data Structures	R
335	Object-oriented Software Design	R
410	Operating Systems	R
420	Computer Architecture	\mathbf{C}
422	Computer Networks	\mathbf{C}
425	Introduction To Computer Security	\mathbf{C}
429	Interdisciplinary Topics In Cybersecurity	Ε
435	Software Engineering	\mathbf{C}
440	Introduction To Artificial Intelligence	\mathbf{C}
444	Information Technology Project Management	Ε
450	Translation Of Programming Languages	\mathbf{C}
452	Organization Of Programming Languages	\mathbf{C}
460	Computability And Formal Language Theory	\mathbf{C}
471	Media Processing And Multimedia Computing	\mathbf{C}
472	Computer Graphics	\mathbf{C}
475	Introduction To Computational Linguistics	\mathbf{C}
480	Database Systems	\mathbf{C}
484	Information Retrieval	\mathbf{C}
490	Independent Study In Computer Science	Ε
491	Selected Topics In Computer Science	Ε
498	Collaborative Design (w)	R

Michigan State University

 Table A.31: Courses for the Computer Science major at Michigan State University

Registration		Req
ID	Course Name	Ind
1013	Computer Concepts And Applications	E
1023	Computing For Science Majors	Ε
1033	Introductory Topics In Computing	Ε
1043	Computer Science I	R
1053	Computer Science II	R
2084	Introduction To Computer Architecture	R
2133	Data Structures	R
3023	Logic Design	R
3233	Theory Of Computation	R
3493	Internet Programming	Ε
3533	Numerical Analysis	Ε
4103	Introduction To Operating Systems	R
4113	Software Engineering	R
4123	Data Base Management Systems	Ε
4143	Topics In Contemporary Programming Languages	R
4213	Introduction To Computer Graphics	\mathbf{E}
4223	Introduction To Simulation	\mathbf{E}
4233	Artificial Intelligence	\mathbf{E}
4313	Interactive 3d Game Graphics	\mathbf{E}
4433	Computer Communications And Networks	\mathbf{E}
4453	Computer Architecture	\mathbf{E}
4773	Internship In Computer Science	\mathbf{E}
4883	Topics In Computer Science	\mathbf{E}
4991	Seminar In Social Responsibility 1 Semester Hour Prerequi-	R
	site: Must Be In Last Year Prior To Graduation	
4993	Independent Study 3 Semester Hours Prerequisite: Consent Of The Chair	Ε

Midwestern State University

Table A.32: Courses for the Computer Science major at Midwestern State University

Registration		Req
ID	Course Name	Ind
CS 105	Introduction To Computing	R
CS 135	Computer Science I	R
CS 202	Computer Science II	R
CS 241	Introduction To Computer Methods For Engineers	\mathbf{E}
CS 281	Introduction To Computer Game Development	Ε
CS 282	Simulation Physics	\mathbf{E}
CS 302	Data Structures	R
CS 320	Interaction Design	\mathbf{E}
CS 326	Programming Languages, Concepts And Implementation	R
CS 330	Design Patterns	Ε
CS 365	Mathematics Of Computer Science	R
CS 381	The Game Development Pipeline	Ε
CS 382	Introduction To Artificial Intelligence	Ε
CS 415	Parallel Computing	Ε
CS 420	Human-computer Interaction	Ε
CS 425	Software Engineering	R
CS 426	Senior Projects In Computer Science	R
CS 446	Principles Of Operating Systems	R
CS 447	Computer Systems Administration	Ε
CS 450	Fundamentals Of Integrated Computer Security	Ε
CS 456	Automata And Formal Languages	R
CS 457	Database Management Systems	Ε
CS 460	Compiler Construction	Ε
CS 466	Numerical Methods I	Ε
CS 467	Numerical Methods II	Ε
CS 474	Image Processing And Interpretation	Ε
CS 477	Analysis Of Algorithms	R
CS 479	Pattern Recognition	Ε
CS 480	Computer Graphics	Ε
CS 481	Advanced Computer Game Design	Ε
CS 482	Artificial Intelligence	Ε
CS 483	Artificial Intelligence Programming	Ε
CS 485	Computer Vision	Ε
CS 486	Advanced Computer Vision	Ε
CS 491	Topics	Ε
CS 493	Directed Study In Computer Science	Ε
CS 494	Internship In Computer Science	E

Nevada, Reno, University of

 Table A.33: Courses for the Computer Science major at Nevada, Reno, University of

Registration		Req
ID	Course Name	Ind
CSE 101	Introduction To Computer Science And Information Technol-	R
	ogy	
CSE 113	Introduction To Programming	R
CSE 122	Algorithms And Data Structures	R
CSE 213	Introduction To Object Oriented Programming	R
CSE 221	Computer System Organization	R
CSE 222	Systems Programming	R
CSE 321	Internet And Web Programming	\mathbf{E}
CSE 324	Principles Of Programming Languages	R
CSE 325	Principles Of Operating Systems	R
CSE 326	Software Engineering	R
CSE 328	Secure Software Construction	\mathbf{E}
CSE 331	Computer Architecture	R
CSE 342	Formal Languages And Automata	R
CSE 344	Design And Analysis Of Algorithms	R
CSE 351	Modeling And Simulation Technologies For Information	\mathbf{E}
	Systems	
CSE 353	Data And Computer Communication	R
CSE 373	Introduction To Database Systems	\mathbf{E}
CSE 382	Legal, Ethical, and Social Issues of Information Technology	R
CSE 423	Compiler Writing	R
CSE 441	Cryptography And Applications	\mathbf{E}
CSE 451	Introduction To Parallel Processing	\mathbf{E}
CSE 453	Computer Networks And The Internet	\mathbf{E}
CSE 454	Computer Graphics	\mathbf{E}
CSE 463	Information Assurance	\mathbf{E}
CSE 464	Introduction To Soft Computing	E
CSE 476	Visualization	E
CSE 489	Special Topics In Computer Science	E

New Mexico Institute of Mining and Technology

 Table A.34: Courses for the Computer Science major at New Mexico Institute of Mining and Technology

Registration		Req
ID	Course Name	Ind
CS 110	Introduction To Computer Science	E
CS 112	Introduction To The World Wide Web And Internet	Ε
CS 122	Programming For Engineering And Science	\mathbf{E}
CS 122H	Programming For Engineering And Science - Honors	\mathbf{E}
CS 122L	Programming For Engineering And Science Lab	\mathbf{E}
CS 123	Programming In Fortran	\mathbf{E}
CS 126	Computer Science I	R
CS 136	Computer Science II	R
CS 199	Special Topics	Ε
CS 200	Introduction To Computer Organization	R
CS 212	Web Programming	Ε
CS 248	Foundations Of Computer Science	Ε
CS 249	Data Structures	R
CS 299	Special Topics	Ε
CS 301	Social And Ethical Issues In Computer Science	R
CS 315	Automata Theory	R
CS 345	Principles Of Database Systems	Ε
CS 386	Software Engineering	R
CS 389	Cooperative Education	Ε
CS 396	Principles Of Languages	R
CS 399	Special Topics	Ε
CS 408	Fieldwork Experience	Ε
CS 413	Virtual Worlds	Ε
CS 421	Algorithms	R
CS 430	Computer Graphics	Ε
CS 445	Data Mining	\mathbf{E}
CS 450	Introduction To Parallel Computing	Ε
CS 460	Computer Networks	\mathbf{E}
CS 470	Introduction To Intelligent Systems	Ε
CS 476C	Applied Capstone Design	\mathbf{E}
CS 477	Advanced User Interfaces	\mathbf{E}
CS 480	Operating Systems	R
CS 481	Compilers	Ε
CS 485	Undergraduate Research	Ε
CS 486C	Capstone Experience	R
CS 497	Independent Study	Ε
CS 499	Contemporary Developments	Ε

Northern Arizona University

Table A.35: Courses for the Computer Science major at Northern Arizona University

Oberlin College

Registration		Req
ID	Course Name	Ind
CSCI 150	Principles Of Computer Science I	R
CSCI 151	Principles Of Computer Science II	R
CSCI 210	Computer Organization	R
CSCI 215	Cryptology	${ m E}$
CSCI 241	Systems Programming	${ m E}$
CSCI 259	Computer Animation	${ m E}$
CSCI 261	Introduction To Game Design	${ m E}$
CSCI 275	Programming Abstractions	R
CSCI 280	Introduction To Algorithms	R
CSCI 307	Programming Languages	${ m E}$
CSCI 311	Database Systems	${ m E}$
CSCI 317	Computer Architecture	${ m E}$
CSCI 331	Compilers	${ m E}$
CSCI 333	Natural Language Processing	${ m E}$
CSCI 341	Operating Systems	${ m E}$
CSCI 342	Computer Networks	${ m E}$
CSCI 343	Computer And Information Security	${ m E}$
CSCI 357	Computer Graphics	${ m E}$
CSCI 364	Artificial Intelligence	${ m E}$
CSCI 365	Advanced Algorithms	${ m E}$
CSCI 383	Theory Of Computer Science	R
CSCI 401	Honors	E

 Table A.36: Courses for the Computer Science major at Oberlin College

Registration		Req
ID	Course Name	Ind
CS 1003	Computer Proficiency	Е
CS 1103	Computer Programming	\mathbf{E}
CS 1113	Computer Science I	\mathbf{E}
CS 2133	Computer Science II	\mathbf{E}
$CS \ 2301$	Fortran Programming	\mathbf{E}
$CS \ 2331$	Sas Programming	\mathbf{E}
CS 2351	Unix Programming	\mathbf{E}
CS 2433	C/c++ Programming	R
CS 2570	Special Problems In Computer Science	\mathbf{E}
CS 3030	Industrial Practice In Computer Science	\mathbf{E}
CS 3363	Organization Of Programming Languages	R
CS 3373	Advanced Object-oriented Programming For Windowing	\mathbf{E}
	Environments	
CS 3423	Introduction To Database Systems	\mathbf{E}
CS 3443	Computer Systems	R
$CS \ 3513$	Numerical Methods For Digital Computers	R
CS 3570	Special Problems In Computer Science	\mathbf{E}
CS 3613	Theoretical Foundations Of Computing	R
CS 3653	Discrete Mathematics For Computer Science	R
CS 4113	Techniques Of Computer Science For Science And Engineer-	\mathbf{E}
	ing	
$CS \ 4143$	Computer Graphics	\mathbf{E}
CS 4154	Computer Science Migration	\mathbf{E}
$CS \ 4173$	Video Game Development	\mathbf{E}
CS 4183	Video Game Design	\mathbf{E}
CS 4243	Algorithms And Processes In Computer Security	\mathbf{E}
CS 4273	Software Engineering	\mathbf{E}
$CS \ 4283$	Computer Networks	\mathbf{E}
$CS \ 4323$	Design And Implementation Of Operating Systems I	R
CS 4343	Data Structures And Algorithm Analysis I	R
$CS \ 4443$	Compiler Writing I	Ε
CS 4513	Numerical Mathematics: Analysis	Ε
CS 4883	Computer Networks	R

Oklahoma State University

 Table A.37: Courses for the Computer Science major at Oklahoma State University

Registration Req Course Name Ind ID Е CS 101 **Computers:** Applications And Implications Е CS 151 Introduction To C Programming R CS 160 **Computer Science Orientation** R CS 161 Introduction To Computer Science I CS 162 R Introduction To Computer Science II CS 195 Е Introduction To Web Authoring CS 199 Selected Topics Е CS 261 Data Structures R Е CS 262 Programming Projects In C++ R CS 271 Computer Architecture And Assembly Language CS 275 Introduction To Databases R CS 295 Е Intermediate Web Authoring CS 311 **Operating Systems I** R CS 312 Linux System Administration Ε Е CS 321 Introduction To Theory Of Computation CS 325 R Analysis Of Algorithms Е CS 331 Introduction To Artificial Intelligence CS 352 Introduction To Usability Engineering R CS 361 R. Software Engineering I CS 362 Software Engineering II R CS 372 Introduction To Computer Networks R R CS 381 **Programming Language Fundamentals** Е CS 391 H Social And Ethical Issues In Computer Science CS 391 R Social And Ethical Issues In Computer Science CS 395 Interactive Multimedia Е Research CS 401 Е CS 403 Е Thesis Е CS 405 Reading And Conference CS 406 Е Projects Е CS 407 Seminar CS 410 Е Occupational Internship R. CS 411 **Operating Systems II** CS 419 Е H Selected Topics In Computer Science CS 419 Selected Topics In Computer Science Е CS 420 Graph Theory With Applications To Computer Science Е Е CS 434 Machine Learning And Data Mining CS 440 **Database Management Systems** Е

Oregon State University

 Table A.38: Courses for the Computer Science major at Oregon State University

Registratio	n	Req
ID	Course Name	Ind
CS 450	Introduction To Computer Graphics	Ε
CS 461	Senior Software Engineering Project	R
CS 462	Senior Software Engineering Project	R
CS 463	Senior Software Engineering Project	R
CS 472	Computer Architecture	${ m E}$
CS 475	Introduction To Parallel Computing	${ m E}$
CS 476	Advanced Computer Networking	${ m E}$
CS 480	Translators	${ m E}$
CS 495	Interactive Multimedia Projects	E

Oregon State University (page 2)

Table A.39: Courses for the Computer Science major at Oregon State University (Page 2)

Pace University

Registration		Req
ID	Course Name	Ind
CS 108	Introduction To Computer Science	E
CS 109	Introduction To Computing Using C++	\mathbf{E}
CS 113	Mathematical Structures For Computer Science	\mathbf{E}
CS 121	Computer Programming I	R
CS 122	Computer Programming II	R
CS 150	The Internet And Web Authoring	\mathbf{E}
CS 152	Internet Programming I	\mathbf{E}
CS 154	Internet Programming II	\mathbf{E}
CS 156	Scripting Languages	\mathbf{E}
CS 199V	Topic: Formal Discrete Structures	\mathbf{E}
CS 232	Computer Organization	R
CS 241	Data Structures And Algorithms I	R
CS 242	Data Structures And Algorithms II	R
CS 271	Fundamentals Of Unix And C Programming	R
CS 295	Computer Science Internship	Ε
CS 301	Computer Science Internship	Ε
CS 312	Research Methods In Computers And Society	Ε
CS 320	Introduction To Xml Application Development	Ε
CS 321	Introduction To Game Programming	Ε
CS 324	Application Development With	Ε
CS 325	Introduction To Data Mining	Ε
CS 326	Intro To Computer Vision Pattern Recognition	Ε
CS 331	Security In Computing	Ε
CS 344	Internet Computing With Distributed Components	\mathbf{E}
CS 351	Automata And Computability	\mathbf{E}
CS 361	Programming Languages And Implementation	\mathbf{E}
CS 371	Operating Systems And Architecture I	\mathbf{E}
CS 372	Operating Systems And Architecture II	\mathbf{E}
CS 383	Computer Graphics	\mathbf{E}
CS 385	Artificial Intelligence I	\mathbf{E}
CS 387	Database Design	\mathbf{E}
CS 388	Data Communications	\mathbf{E}
CS 389	Software Engineering	\mathbf{E}
CS 396M	Topic: Formal Software Development	\mathbf{E}
CS 397A	Topic: Software Design	Ε
CS 397B	Topic: Social Choice And Computer Science	Ε
CS 397D	Financial Computing	\mathbf{E}
CS 397E	Topic: Enterprise System Integration With Web Service	E

Table A.40: Courses for the Computer Science major at Pace University

Registration		Req
ID	Course Name	Ind
CS 397F	Directed Readings In Computer Science	E
CS 397J	Topic: Parallel And Distributed Computing	Ε
CS 397 K	Topic: Internet Computing With Distributed Systems	Ε
CS 397L	Advanced Problem Solving Using Lego Robotics	\mathbf{E}
CS 397M	Topic: Computer Game Engineering	Ε
CS 397N	Topic: Technology Entrepreneurship	Ε
CS 397P	Engineering Designs In 3-d Worlds	\mathbf{E}
CS 397R	Topic: Robotics	Ε
CS 397S	Topic:mobile Application Development	Ε
CS 397U	Topic: Linux System Programming	Ε
CS 397W	Mobile Phone Programming & Entrepreneurship	Ε
CS 397Y	Topic: Windows System Programming	Ε
CS 397Z	Topic: Visual Computing	Ε
CS 483	Computer Graphics II	Ε
CS 488	Computer Networks And The Internet	R
CS 490	Independent Study In Computer Science	Е

Pace University (page 2)

Table A.41: Courses for the Computer Science major at Pace University (Page 2)

المنارات المستشارات

Registration		Req
ID	Course Name	Ind
CS 0101	Introduction To Computer Science	R
CS 0102	Introduction To Information Structures	R
CS 0103	Integrated Business Microcomputing	${ m E}$
CS 0106	Computational Methods	${ m E}$
CS 0112	Intro To 3d Modeling And Animation	${ m E}$
CS 0161	The Technology Of Computing 3	${ m E}$
CS 0162	Survey Of Information Technology	${ m E}$
CS 0163	Introduction To Web Programming	${ m E}$
CS 0165	Networking I	${ m E}$
CS 0166	Networking II	${ m E}$
CS 0190	Practicum In Fortran	${ m E}$
$CS \ 0191$	Practicum In C	${ m E}$
CS 0192	Practicum In C++	${ m E}$
$CS \ 0193$	Practicum In Unix	${ m E}$
CS 0194	Practicum In Java	${ m E}$
CS 0195	Practicum In Mathematica	${ m E}$
CS 0196	Practicum In Perl	${ m E}$
CS 0197	Directed Study Computer Science	${ m E}$
CS 0198	Practicum In Python	${ m E}$
$CS \ 0199$	Practicum In C#	${ m E}$
CS 0201	Concepts Of Computer Science	R
CS 0203	Data Structure	R
CS 0205	Programming Applications	${ m E}$
CS 0209	Introduction To Web Databases	${ m E}$
CS 0230	Crime In The Digital Age	${ m E}$
CS 0235	Microcontroller Architecture Programming	R
CS 0240	Introduction To Informatics	${ m E}$
CS 0250	Special Topics	E
CS 0261	Computer Security	Ε
CS 0262	Systems Administration	Ε
CS 0263	Survivability And Information Assurance	Ε
CS 1303	Programming Languages	Ε
$CS \ 1304$	Introduction To Simulation	${ m E}$
CS 1307	Database Management	${ m E}$
CS 1312	Unix Operating System	${ m E}$
$CS \ 1314$	Network Computing	${ m E}$
$CS \ 1315$	Software Maintenance And Enhancement	${ m E}$
CS 1316	Computational Linear Algebra	E

Pittsburgh Bradford, University of

 Table A.42: Courses for the Computer Science major at Pittsburgh Bradford, University of

Registration	1	Req
ID	Course Name	Ind
CS 1320	User Interface Design	E
$CS \ 1330$	Social And Ethical Impact Of Computing	R
$CS \ 1332$	Digital Logic	Ε
$CS \ 1342$	Computer Organization	Ε
$CS \ 1401$	Principles Of Software Engineering	${ m E}$
$CS \ 1405$	Advanced Database Management	E
$CS \ 1410$	Computer Visualization	${ m E}$
$CS \ 1415$	Data Mining	E
CS 1450	Topics In Computer Science	${ m E}$
$CS \ 1452$	Capstone: Computer Science	R
CS 1497	Directed Study: Computer Science	Ε
$CS \ 1498$	Directed Research: Computer Science	Ε
CS 1499	Internship	E

Pittsburgh Bradford, University of (page 2)

Table A.43: Courses for the Computer Science major at Pittsburgh Bradford, Universityof (Page 2)

Princeton University

Registration		Req
ID	Course Name	Ind
COS109	Computers In Our World	Е
COS116	The Computational Universe	\mathbf{E}
COS126	General Computer Science	R
$\cos 217$	Introduction To Programming Systems	R
COS226	Algorithms And Data Structures	R
COS318	Operating Systems	\mathbf{C}
$\cos 320$	Compiling Techniques	\mathbf{C}
$\cos 323$	Computing For The Physical And Social Sciences	\mathbf{C}
$\cos 325$	Transforming Reality By Computer	\mathbf{C}
COS333	Advanced Programming Techniques	\mathbf{C}
$\cos 340$	Reasoning About Computation	\mathbf{C}
$\cos 342$	Introduction to Graph Theory	\mathbf{C}
$\cos 397$	Junior Independent Work	\mathbf{C}
$\cos 398$	Junior Independent Work	\mathbf{C}
$\cos 402$	Artificial Intelligence	\mathbf{C}
$\cos 423$	Theory Of Algorithms	\mathbf{C}
$\cos 424$	Interacting with Data	\mathbf{C}
$\cos 425$	Database And Information Management Systems	\mathbf{C}
$\cos 426$	Computer Graphics	\mathbf{C}
$\cos 429$	Computer Vision	\mathbf{C}
$\cos 432$	Information Security	\mathbf{C}
$\cos 433$	Cryptography	С
$\cos 435$	Information Retrieval, Discovery, And Delivery	\mathbf{C}
$\cos 436$	Human-computer Interface Technology	\mathbf{C}
$\cos 441$	Programming Languages	\mathbf{C}
$\cos 444$	Internet Auctions: Theory And Practice	С
$\cos 451$	Computational Geometry	\mathbf{C}
$\cos 455$	Introduction to Genomics and Computational Molecular	С
	Biology	
$\cos 461$	Computer Networks	\mathbf{C}
$\cos 471$	Computer Architecture and Organization	\mathbf{C}
$\cos 479$	Pervasive Information Systems	С
$\cos 487$	Theory Of Computation	С
$\cos 494$	Special Topics In Artificial Intelligence	Ε
$\cos 495$	Special Topics In Computer Science	\mathbf{E}
$\cos 497$	Senior Independent Work	С
COS498	Senior Independent Work	С

 Table A.44: Courses for the Computer Science major at Princeton University

Rhode Island College

Registration		Req
ID	Course Name	Ind
CSCI 101	Introduction To Computers	Е
CSCI 102	Introduction To Visual Basic Programming	Ε
CSCI 157	Introduction To Algorithmic Thinking	Ε
CSCI 201	Computer Programming I	R
CSCI 203	Advanced Visual Basic Programming	\mathbf{C}
CSCI 221	Computer Programming II	R
CSCI 301	Introduction to Java Programming	\mathbf{C}
CSCI 302	C++ Programming	\mathbf{C}
CSCI 305	Functional Programming	\mathbf{C}
CSCI 312	Computer Organization And Architecture I	R
CSCI 313	Computer Organization And Architecture II	R
CSCI 315	Information Structures	R
CSCI 325	Organization Of Programming Languages	R
CSCI 401	Software Engineering	R
CSCI 415	Software Testing	\mathbf{C}
CSCI 422	Introduction To Computation Theory	R
CSCI 423	Analysis Of Algorithms	R
CSCI 427	Introduction To Artificial Intelligence	\mathbf{C}
CSCI 435	Operating Systems And Computer Architecture	R
CSCI 437	Introduction To Data And Computer Communications	\mathbf{C}
CSCI 455	Introduction To Database Systems	С

 Table A.45: Courses for the Computer Science major at Rhode Island College

Registration		Req
ID	Course Name	Ind
CSC 108	Computer Applications For The Humanities	E
CSC 109	Computer Applications For The Sciences	\mathbf{E}
CSC 161	Or Equivalent	\mathbf{E}
CSC 171	The Science Of Programming	R
CSC 172	The Science Of Data Structures	R
CSC 173	Computation And Formal Systems	R
CSC 190	Issues In Computing	\mathbf{E}
CSC 200	Undergraduate Problem Seminar	R
CSC 210	Web Programming	\mathbf{E}
CSC 242	Artificial Intelligence	R
CSC 244	Logical Foundations Of Artificial Intelligence	\mathbf{E}
CSC 246	Mathematical Foundations Of Artificial Intelligence	\mathbf{E}
CSC 247	Natural Language Processing	\mathbf{E}
CSC 248	Statistical Speech And Language Processing	\mathbf{E}
CSC 249	Machine Vision	\mathbf{E}
CSC 252	Computer Organization	R
CSC 254	Programming Language Design & Implementation	R
CSC 255	Advanced Programming Systems	Ε
CSC 256	Operating Systems	\mathbf{E}
CSC 257	Computer Networks	Ε
CSC 258	Parallel And Distributed Systems	Ε
CSC 260	Topics In Natural Language Dialog Systems	Ε
CSC 280	Computer Models And Limitations	R
CSC 281	Cryptography	\mathbf{E}
CSC 282	Design And Analysis Of Efficient Algorithms	R
CSC 284	Advanced Algorithms	\mathbf{E}
CSC 286	Computational Complexity	\mathbf{E}
CSC 287	Randomized, Parallel, And Other Advanced Modes Of	Ε
	Computation	
CSC 290	Topics In Computer Science	\mathbf{E}
CSC 391	Independent Study In Computer Science	\mathbf{E}
CSC 391H	Honors Independent Study In Computer Science	\mathbf{E}
CSC 393	Senior Project	\mathbf{E}
CSC 395	Research In Computer Science	Ε

Rochester, University of

Table A.46: Courses for the Computer Science major at Rochester, University of

Registration		Req
ID	Course Name	Ind
CSC 105	Introduction To Computers	Е
CSC 150	Computer Science I	R
CSC 210	Web Authoring	Ε
CSC 250	Computer Science II	R
CSC 251	Finite Structures	R
CSC 284	Database Processing	\mathbf{E}
CSC 291	Independent Study	\mathbf{E}
CSC 292	Topics	\mathbf{E}
CSC 300	Data Structures	R
CSC 314	Assembly Language	R
CSC 317	Computer Organization And Architecture	R
CSC 372	Analysis Of Algorithms	R
CSC 391	Independent Study	\mathbf{E}
CSC 392	Topics	\mathbf{E}
CSC 410	Parallel Computing	\mathbf{E}
CSC 412	Cryptography	\mathbf{E}
CSC 415	Introduction To Robotics	\mathbf{E}
CSC 416	Introduction To Autonomous Systems	\mathbf{E}
CSC 421	Graphical User Interfaces	R
CSC 433	Computer Graphics	\mathbf{E}
CSC 440	Advanced Digital Systems	\mathbf{E}
CSC 445	Intro To Theory Of Computation	Ε
CSC 447	Artificial Intelligence	\mathbf{E}
CSC 448	Machine Learning	\mathbf{E}
CSC 449	Pattern Recognition	\mathbf{E}
CSC 456	Operating Systems	R
CSC 461	Programming Languages	R
CSC 463	Data Communications	\mathbf{E}
CSC 464	Introduction To Digital Image Processing And Computer	\mathbf{E}
	Vision	
CSC 465	Senior Design I	R
CSC 467	Senior Design II	R
CSC 470	Software Engineering	R
CSC 476	Theory Of Compilers	\mathbf{E}
CSC 484	Database Management Systems	R
CSC 491	Independent Study	Ε
CSC 492	Topics	Ε
CSC 498	Undergraduate Research/scholarship	\mathbf{E}

South Dakota School of Mines and Technology

 Table A.47: Courses for the Computer Science major at South Dakota School of Mines and Technology

Registration		Req
ID	Course Name	Ind
CSCI 101L	Fundamentals Of Computer Programming	R
CSCI 102L	Data Structures	R
CSCI 106Lx	Introduction To Computer Engineering/computer Science	\mathbf{E}
CSCI 110	Introduction To Digital Logic	\mathbf{E}
CSCI 180	Survey Of Digital Games And Their Technologies	\mathbf{E}
CSCI 200L	Object-oriented Programming	R
CSCI 201L	Principles Of Software Development	R
CSCI 271	Discrete Methods In Computer Science	R
CSCI 281	Pipelines For Games And Interactives	Ε
CSCI 300	Introduction To Intelligent Agents Using Science Fiction	Ε
CSCI 303	Design And Analysis Of Algorithms	R
CSCI 320	Digital Media Basics For Multimedia	Ε
CSCI 351	Programming And Multimedia On The World Wide Web	Ε
CSCI 352L	Computer Organization And Architecture	Ε
CSCI 355x	Software Design For Engineers	Ε
CSCI 357	Basic Organization Of Computer Systems	Ε
CSCI 377	Introduction To Software Engineering	R
CSCI 380	Video Game Programming	Ε
CSCI 390	Special Problems	Ε
CSCI 402	Operating Systems	R
CSCI 410x	Translation Of Programming Languages	Ε
CSCI 445	Introduction To Robotics	Ε
CSCI 450	Introduction To Computer Networks	Ε
CSCI 452L	Game Hardware Architectures	Ε
CSCI 454L	Introduction To Systems Design Using Microprocessors	Ε
CSCI 455x	Introduction To Programming Systems Design	Ε
CSCI 457	Computer Systems Organization	Ε
CSCI 458	Numerical Methods	Ε
CSCI 459	Computer Systems And Applications Modeling Fundamentals	Ε
CSCI 460	Introduction To Artificial Intelligence	Ε
CSCI 464	Foundations Of Exotic Computation	Ε
CSCI 477	Design And Construction Of Large Software Systems	R
CSCI 480	Computer Graphics	E

Southern California, University of

Table A.48: Courses for the Computer Science major at Southern California, University
of

Registration		Req
ID	Course Name	Ind
CSCI 485	File And Database Management	Е
CSCI 486	Serious Games Development	Ε
CSCI 487	Programming Game Engines	Ε
CSCI 490x	Directed Research	Ε
CSCI 491abL	Final Game Project	E

Southern California, University of (page 2)

 Table A.49: Courses for the Computer Science major at Southern California, University of (Page 2)

Registration		Req
ID	Course Name	Ind
CS 105	Introduction To Scientific Computing	E
$CS \ 115$	Introduction To Computer Science	R
CS 135	Discrete Structures	\mathbf{E}
CS 146	Introduction To Web Programming And Project Development	R
CS 181	Introduction To Computer Science Honors I	\mathbf{E}
CS 182	Introduction To Computer Science Honors II	\mathbf{E}
CS 284	Data Structures	R
CS 334	Automata And Computation	\mathbf{E}
CS 347	Software Development Process	R
CS 383	Computer Organization And Programming	R
CS 385	Algorithms	R
CS 392	Systems Programming	R
CS 423	Software Engineering Practice I	R
CS 424	Software Engineering Practice II	R
CS 442	Database Management Systems	R
CS 465	Selected Topics In Computer Science	Ε
CS 488	Computer Architecture	R
CS 492	Operating Systems	R
CS 496	Principles Of Programming Languages	R
CS 497	Independent Study	Ε
CS 498	Senior Research I	Ε
CS 499	Senior Research II	Ε
CS 506	Introduction to IT Security	R
CS 511	Concurrent Programming	R

Stevens Institute of Technology

Table A.50: Courses for the Computer Science major at Stevens Institute of Technology

Texas A & M

Registration		Req
ID	Course Name	Ind
CSCE 110	Programming I	E
CSCE 111	Introduction To Computer Science Concepts And Program-	Ε
	ming	
CSCE 113	Intermediate Programming And Design	Ε
CSCE 121	Introduction To Program Design And Concepts	R
CSCE 181	Introduction To Computing	R
CSCE 203	Introduction To Computing	\mathbf{E}
CSCE 206	Structured Programming In C	\mathbf{E}
CSCE 211	Data Structures And Their Implementations	\mathbf{E}
CSCE 221	Data Structures And Algorithms	R
CSCE 222	Discrete Structures For Computing	R
CSCE 285	Directed Studies	Ε
CSCE 289	Special Topics In	\mathbf{E}
CSCE 291	Research	\mathbf{E}
CSCE 310	Database Systems	\mathbf{E}
CSCE 311	Analysis Of Algorithms	\mathbf{E}
CSCE 312	Computer Organization	R
CSCE 313	Introduction To Computer Systems	R
CSCE 314	Programming Languages	R
CSCE 315	Programming Studio	R
CSCE 321	Computer Architecture	\mathbf{E}
CSCE 332	Programming Language Design	\mathbf{E}
CSCE 350	Computer Architecture And Design	\mathbf{E}
CSCE 410	Operating Systems	\mathbf{E}
CSCE 411	Design And Analysis Of Algorithms	R
CSCE 420	Artificial Intelligence	\mathbf{E}
CSCE 431	Software Engineering	\mathbf{E}
CSCE 433	Formal Languages And Automata	\mathbf{E}
CSCE 434	Compiler Design	\mathbf{E}
CSCE 436	Computer-human Interaction	\mathbf{E}
CSCE 438	Distributed Objects Programming	\mathbf{E}
CSCE 440	Quantum Algorithms	\mathbf{E}
CSCE 441	Computer Graphics	Ε
CSCE 442	Scientific Programming	Ε
CSCE 444	Structures Of Interactive Information	Е
CSCE 452	Robotics And Spatial Intelligence	Е
CSCE 456	Real-time Computing	Е
CSCE 462	Microcomputer Systems	Ε

Table A.51: Courses for the Computer Science major at Texas A & M

Registration		Req
ID	Course Name	Ind
CSCE 463	Networks And Distributed Processing	E
CSCE 469	Advanced Computer Architecture	${ m E}$
CSCE 470	Information Storage And Retrieval	${ m E}$
CSCE 481	Seminar	R
CSCE 482	Senior Capstone Design	R
CSCE 483	Computer Systems Design	${ m E}$
CSCE 485	Directed Studies	${ m E}$
CSCE 489	Special Topics	${ m E}$
CSCE 491	Research	${ m E}$

Texas A & M (page 2)

Table A.52: Courses for the Computer Science major at Texas A & M (Page 2)

Registration		Req
ID	Course Name	Ind
CSE 1104	Introduction To Engineering	R
CSE 1105	Introduction To Computer Science And Engineering	R
CSE 1301	Computer Literacy	\mathbf{E}
CSE 1310	Introduction To Computers & Programming	\mathbf{E}
CSE 1311	Introductory Programming For Engineers & Scientists	\mathbf{E}
CSE 1320	Intermediate Programming	R
CSE 1325	Object-oriented & Event-driven Programming	R
CSE 1392	Special Topics	\mathbf{E}
CSE 2140	Digital Logic Lab	\mathbf{E}
CSE 2312	Computer Organization & Architecture	R
CSE 2315	Discrete Structures	R
CSE 2320	Algorithms & Data Structures	R
CSE 2321	Data Structures For Non-engineers	\mathbf{E}
CSE 2392	Special Topics	\mathbf{E}
CSE 3302	Programming Languages	R
CSE 3310	Fundamentals Of Software Engineering	R
CSE 3315	Theoretical Concepts In Computer Science And Engineering	R
CSE 3316	Professional Practices	R
CSE 3320	Operating Systems	R
CSE 3330	Database Systems And File Structures	R
CSE 3340	Computational Methods In Computer Engineering	\mathbf{E}
CSE 3392	Special Topics	\mathbf{E}
CSE 3442	Embedded Systems I	\mathbf{E}
CSE 4191	Individual Projects	\mathbf{E}
CSE 4303	Computer Graphics	\mathbf{E}
CSE 4305	Compilers For Algorithmic Languages	\mathbf{E}
CSE 4308	Artificial Intelligence I	R
CSE 4309	Artificial Intelligence II	\mathbf{E}
CSE 4311	Object-oriented Software Engineering	\mathbf{E}
CSE 4313	Introduction To Signal Processing	\mathbf{E}
CSE 4316	Computer System Design Project I	R
CSE 4317	Computer System Design Project II	R
CSE 4321	Software Testing & Maintenance	Ε
CSE 4322	Software Project Management	\mathbf{E}
CSE 4323	Quantitative Computer Architecture	\mathbf{E}
CSE 4331	Database Implementation And Theory	\mathbf{E}

Texas Arlington, University of

Table A.53: Courses for the Computer Science major at Texas Arlington, University of

Registration		Req
ID	Course Name	Ind
CSE 4340	Mobile Systems Engineering	E
CSE 4342	Embedded Systems II	${ m E}$
CSE 4344	Computer Network Organization	E
CSE 4348	Multimedia Systems	${ m E}$
CSE 4351	Parallel Processing	E
CSE 4360	Autonomous Robot Design And Programming	Ε
CSE 4361	Software Design Patterns	${ m E}$
CSE 4391	Individual Projects	${ m E}$
CSE 4392	Special Topics	E

Texas Arlington, University of (page 2)

 Table A.54: Courses for the Computer Science major at Texas Arlington, University of (Page 2)

Registration		Req
ID	Course Name	Ind
1004	Computer Literacy	E
1044	Introduction To Programming In C	Ε
1054	Introduction To Programming In Java	Ε
1104	Introduction To Computer Science	Ε
1114	Introduction To Software Design Fundamental Concepts Of	R
	Programming From An Object-oriented Perspective	
1124	Introduction To Media Computation	R
1204	Internet And System Software	Ε
1344	Programming In C	\mathbf{E}
1604	Introduction To The Internet	Ε
1614	Introduction To Living In The Knowledge Society (likes)	\mathbf{E}
1704	Introduction To Data Structures And Software Engineering	\mathbf{E}
1705	Introduction To Object-oriented Development	Ε
1944	Computer Science First Year Seminar	\mathbf{E}
2104	Introduction To Problem Solving In Computer Science	R
2114	Software Design And Data Structures	R
2204	Unix	\mathbf{E}
2304	Self Study In A Programming System	\mathbf{E}
2504	Introduction To Computer Organization	\mathbf{E}
2505	Introduction To Computer Organization I	R
2506	Introduction To Computer Organization II	R
2604	Data Structures And File Management	\mathbf{E}
2605	Data Structs & Oo Development	\mathbf{E}
2704	Object-oriented Software Design And Construction	\mathbf{E}
3114	Data Structures And Algorithms	R
3204	Operating Systems	\mathbf{E}
3214	Computer Systems	R
3304	Comparative Languages	R
3604	Professionalism In Computing	R
3704	Intermediate Software Design And Engineering	\mathbf{E}
3724	Introduction To Human-computer Interaction	Ε
3744	Intro Gui Programming/graphics	Ε
3824	Introduction To Computational Biology And Bioinformatics	Ε
4004	Data And Information Structures	Е

Virginia Polytechnic Institute and State University

 Table A.55: Courses for the Computer Science major at Virginia Polytechnic Institute and State University

Registration		Req
ID	Course Name	Ind
4014	Principles Of Computer Architecture And Operating Systems	Е
4104	Data And Algorithm Analysis	\mathbf{C}
4114	Introduction To Formal Languages And Automata Theory	\mathbf{C}
4124	Theory Of Computation	\mathbf{C}
4204	Computer Graphics	Ε
4214	Simulation And Modeling	Ε
4224	Performance Evaluation Of Computer Systems	Ε
4234	Parallel Computation	Ε
4244	Internet Software Development	Ε
4254	Computer Network Architecture And Programming	Ε
4284	Systems & Networking Capstone	Ε
4304	Compiler Design And Implementation	Ε
4604	Introduction To Data Base Management Systems	Ε
4624	Multimedia, Hypertext And Information Access	Ε
4634	Design Of Information	\mathbf{E}
4644	Creative Computing Studio	Ε
4704	Software Engineering	Ε
4804	Introduction To Artificial Intelligence	Ε

Virginia Polytechnic Institute and State University (page 2)

 Table A.56: Courses for the Computer Science major at Virginia Polytechnic Institute and State University (Page 2)

Registration		Req
ID	Course Name	Ind
CSC 1010	Object Oriented Programming	Е
CSC 1100	Computer Literacy	${ m E}$
CSC 1180	Foundations Of Computer Programming In C/c++	R
CSC 1350	Computer Network Assembly	${ m E}$
CSC 2180	Data Structures	R
CSC 2220	Programming In Java	\mathbf{C}
CSC 2230	Programming In C#	\mathbf{C}
CSC 2300	Software Engineering	R
CSC 3050	Digital Logic	\mathbf{C}
CSC 3180	Introduction To Algorithms	R
CSC 3250	Unix Systems	\mathbf{C}
CSC 3260	Introduction To Human - Computer Interaction	\mathbf{C}
CSC 3300	Fundamentals Of Computer Science	${ m E}$
CSC 3380	Introduction To Numerical Methods	${ m E}$
CSC 3400	Database Design And Applications	R
CSC 3600	Operations Research	${ m E}$
CSC 3710	Discrete Structures	${ m E}$
CSC 3750	Web Technologies	\mathbf{C}
CSC 4000	Operating Systems: Theory And Practice	R
CSC 4110	Advanced Database Systems	\mathbf{C}
CSC 4150	Introduction To Robotics And Artificial Intelligence	\mathbf{C}
CSC 4200	Programming Languages	R
CSC 4300	Computer Architecture	R
CSC 4350	Computer Networks	R
CSC 4380	Information Security	\mathbf{C}
CSC 4400	Computer Graphics	${ m E}$
CSC 4450	Introduction To Compilers	${ m E}$
CSC 4500	Modeling And Simulation	${ m E}$
CSC 4600	Information Characteristics	\mathbf{C}
CSC 4700	Special Studies In Computer Science	${ m E}$
CSC 4990	Computer Science Seminar	R

Virginia's College at Wise, University of

 Table A.57: Courses for the Computer Science major at Virginia's College at Wise, University of

Registration		Req
ID	Course Name	Ind
CS 100	Computer Science	E
CS 101	Intro To Computer Applications	${ m E}$
CS 112	Computer Science For Engineers	${ m E}$
CS 115	Discrete Structures	R
CS 121	Computer Science 1	R
CS 122	Computer Science 2	R
CS 201	Data Structures	R
CS 221	Analysis Of Algorithms	R
CS 222	Intro Software Engineering	R
CS 225	C#	${ m E}$
CS 231	Introduction To Computer Organization	R
CS 251	Operations Workshop I	R
CS 261	Ascs Projects	${ m E}$
CS 263	Introduction To Networking	R
CS 264	Data Base Management	${ m E}$
CS 265	Introduction To Computer Languages	${ m E}$
CS 266	E-commerce	${ m E}$
CS 270	Linux	${ m E}$
CS 279	Sophomore Seminar	R
CS 293	Special Topics	${ m E}$
CS 310	Principles Of Programming Languages	R
CS 322	System Analysis And Design Methodology	R
CS 324	Database Management	R
CS 350	Computer System Concepts	R
CS 365	Computer Languages	${ m E}$
CS 370	Microcontrollers	${ m E}$
CS 410	Compiler Construction	R
CS 450	Operating Systems Structures	${ m E}$
CS 454	Cryptology	${ m E}$
CS 456	Digital Image Processing	${ m E}$
CS 461	Senior Project	R
CS 470	Introduction To Computer Graphics	Ε
CS 472	Artificial Intelligence	Ε
CS 479	Advanced CS Math	R

West Virginia University Institute of Technology

 Table A.58: Courses for the Computer Science major at West Virginia University Institute of Technology

Registration		Req
ID	Course Name	Ind
APCS 110	Microcomputer Applications	E
APCS 112	Computer Applications For Communications	Ε
APCS 114	Computer Applications For Business	Ε
APCS 205	Algorithms & Programming	R
APCS 215	Visual Programming	\mathbf{E}
APCS 220	Computer Organization & Digital Circuits	R
APCS 225	File Processing (cobol)	\mathbf{E}
APCS 242	Computer & Network Management	R
APCS 265	System Analysis And Design Methods	R
APCS 305	Programming Techniques	R
APCS 310	Operating Systems & Networks	\mathbf{E}
APCS 311	Networking	\mathbf{E}
APCS 312	Operating Systems	R
APCS 326	Database Management Information Systems	R
APCS 336	Current Topics In Applied Computer Science (web Program-	R
		Б
APCS 342	Installation/troubleshooting Practicum	E
APCS 344	Training Practicum	E
APCS 345	Numerical Analysis Methods	R
APCS 346	Information & Security Assurance	E
APCS 350	Data Structures & Algorithm Analysis	R
APCS 355	Testing & Quality Assurance	E
APCS 360	Software Engineering Project	R
APCS 370	Systems Implementation	E
APCS 390	Professional Development Seminar	R
APCS 395	Professional Development Seminar II	R

William Penn University

 Table A.59: Courses for the Computer Science major at William Penn University

Wisconsin, University of

Registration ID	Course Name	Req Ind
COMP SCI 202	Introduction To Computation	E Inte
COMP SCI 240	Introduction To Discrete Mathematics	R
COMP SCI 250	Digital Society: The Impact Of Computers And Computer	E
00000 501 200	Technology	Ъ
COMP SCI 252	Introduction To Computer Engineering	Ε
COMP SCI 298	Directed Study In Computer Science	Ε
COMP SCI 302	Introduction To Programming	R
COMP SCI 304	Group Meeting	Ε
COMP SCI 310	Problem Solving Using Computers	Ε
COMP SCI 352	Digital System Fundamentals	R
COMP SCI 354	Machine Organization And Programming	R
COMP SCI 367	Introduction To Data Structures	R
COMP SCI 368	Topics Course Learning A New Programming Language	Ε
COMP SCI 371	Technology Of Computer-based Business Systems	Ε
COMP SCI 412	Introduction To Numerical Methods	\mathbf{C}
COMP SCI 416	Foundations of Scientific Computing	\mathbf{C}
${\rm COMP~SCI~425}$	Introduction to Combinatorial Optimization	\mathbf{C}
COMP SCI 471	Introduction To Computational Statistics	Ε
COMP SCI 475	Introduction To Combinatorics	Ε
$\rm COMP \ SCI \ 513$	Numerical Linear Algebra	\mathbf{C}
COMP SCI 514	Numerical Analysis	\mathbf{C}
$\rm COMP \ SCI \ 520$	Introduction To Theory Of Computing	\mathbf{C}
${\rm COMP~SCI~525}$	Linear Programming Methods	\mathbf{C}
COMP SCI 533	Image Processing	Ε
COMP SCI 536	Introduction To Programming Languages And Compilers	\mathbf{C}
$\rm COMP \ SCI \ 537$	Introduction To Operating Systems	\mathbf{C}
COMP SCI 538	Introduction to the Theory and Design of Programming	\mathbf{C}
	Languages	
COMP SCI 539	Introduction To Artificial Neural Network And Fuzzy Systems	\mathbf{E}
COMP SCI 540	Introduction To Artificial Intelligence	Ε
$\operatorname{COMP}\operatorname{SCI}547$	Computer Systems Modeling Fundamentals	\mathbf{C}
COMP SCI 552	Introduction To Computer Architecture	\mathbf{C}
$\operatorname{COMP}\operatorname{SCI}559$	Computer Graphics	\mathbf{C}
COMP SCI 564	Database Management Systems: Design And Implementation	С

Table A.60: Courses for the Computer Science major at Wisconsin, University of

Wisconsin, University of (page 2)

Registration		Req
ID	Course Name	Ind
COMP SCI 576	Introduction To Bioinformatics	E
COMP SCI 577	Introduction To Algorithms	\mathbf{C}
COMP SCI 640	Introduction To Computer Networks	С
COMP SCI 642	Introduction To Information Security	Ε

Table A.61: Courses for the Computer Science major at Wisconsin, University of (Page 2)

Worcester Polytechnic

Registration		Req
ID	Course Name	Ind
CS 1101	Introduction To Program Design	\mathbf{C}
CS 1102	Accelerated Introduction To Program Design	\mathbf{C}
CS 2011	Introduction To Machine Organization And Assembly Language	Ε
CS 2022	Discrete Mathematics	Е
CS 2102	Object-oriented Design Concepts	R
CS 2118	Object-oriented Design Concepts For Business Applications	Ε
CS 2223	Algorithms	\mathbf{E}
CS 2301	Systems Programming For Non-majors	Ε
CS 2303	Systems Programming Concepts	R
CS 3013	Operating Systems	\mathbf{C}
CS 3041	Human-computer Interaction	\mathbf{C}
CS 3043	Social Implications Of Information Processing	\mathbf{C}
CS 3133	Foundations Of Computer Science	\mathbf{C}
CS 3431	Database Systems I	\mathbf{C}
CS 3516	Computer Networks	Ε
CS 3733	Software Engineering	\mathbf{C}
CS 4032	Numerical Methods for Linear and Nonlinear Systems	\mathbf{E}
CS 4033	Numerical Methods for Calculus and Differential Equations	\mathbf{E}
$CS \ 4120$	Analysis Of Algorithms	\mathbf{C}
$CS \ 4123$	Theory Of Computation	\mathbf{C}
CS 4233	Object-oriented Analysis And Design	\mathbf{C}
$CS \ 4241$	Webware: Computational Technology For Network Informa-	Ε
	tion Systems	
CS 4341	Introduction To Artificial Intelligence	\mathbf{E}
CS 4401	Software Security Engineering	\mathbf{E}
$CS \ 4432$	Database Systems II	\mathbf{E}
$CS \ 4445$	Data Mining And Knowledge Discovery In Databases	\mathbf{E}
$CS \ 4513$	Distributed Computing Systems	\mathbf{C}
$CS \ 4515$	Computer Architecture	\mathbf{C}
CS 4516	Computer Networks	\mathbf{C}
CS 4533	Techniques Of Programming Language Translation	\mathbf{C}
CS 4536	Programming Languages	\mathbf{C}
CS 4731	Computer Graphics	Ε
CS 4732	Computer Animation	E

 Table A.62: Courses for the Computer Science major at Worcester Polytechnic

Appendix B

Key Course List

www.manaraa.com

Course Name	College or University	Req Ind
Advanced Database Systems	Virginia's College at Wise, University of	С

Advanced Database Systems

Table B.1: Example of Advanced Database Systems

Algorithm Analysis

Course Name	College or University	Req Ind
Algorithm Analysis	Brigham Young University	R
Algorithms & Problem Solving Paradigms	Hendrix College	R
Computing And Algorithms I	Kettering University	R
Intermediate Programming: Algo- rithm Design And Analysis	Linfield College	R
Introduction To Algorithms	Wisconsin, University of	С
Introduction To Analysis Of Algo- rithms	Bucknell University	С
Theory Of Algorithms	Princeton University	С

Table B.2: Example of Algorithm Analysis

Algorithms II

Course Name	College or University	Req Ind
Computing And Algorithms II	Kettering University	R

 Table B.3: Example of Algorithms II

Algorithms III

Course Name	College or University	Req Ind
Computing & Algorithms III	Kettering University	R

Table B.4:	Example	of Algorithms	\mathbf{III}
------------	---------	---------------	----------------

Algorithms and Complexity

Course Name	College or University	Req Ind
Advanced Topics In Algorithms, Complexity And Intelligent Systems	Linfield College	R
Algorithm Design And Analysis	Carnegie Mellon University	R
Algorithm Design And Analysis	Kentucky, University of	R
Algorithms	Stevens Institute of Technology	R
Algorithms	Northern Arizona University	R
Algorithms	Christian Brothers University	R
Algorithms	Cedarville University	R
Algorithms & Programming	William Penn University	R
Analysis Of Algorithms	West Virginia University Institute of Technology	R
Analysis Of Algorithms	Oregon State University	R
Analysis Of Algorithms	Eastern Mennonite University	R
Analysis Of Algorithms	Worcester Polytechnic	С
Analysis Of Algorithms	Nevada, Reno, University of	R
Analysis Of Algorithms	South Dakota School of Mines and Technology	R
Analysis Of Algorithms	Rhode Island College	R
Applied Algorithms	Amherst College	С

 Table B.5: Example of Algorithms and Complexity

Course Name	College or University	Req Ind
Data And Algorithm Analysis	Virginia Polytechnic Institute and State University	С
Design And Analysis Of Algorithms	Texas A & M	R
Design And Analysis Of Algorithms	Southern California, University of	R
Design And Analysis Of Algorithms	New Mexico Institute of Mining and Technology	R
Design And Analysis Of Efficient Algorithms	Rochester, University of	R
Efficient Algorithms And Intractable Problems	California Berkely, University of	R
Introduction To Algorithms	Virginia's College at Wise, University of	R
Introduction To Algorithms	Oberlin College	R
Introduction to Analysis of Algo- rithms	Cornell University	R
Introduction To Computational Theory	Brigham Young University	R
Introduction To The Design And Analysis Of Algorithms	Duke University	R
Introduction To Theory Of Comput- ing	Wisconsin, University of	С
Logic, Computability And Complex- ity	Calvin College	С
Theory Of Computation	Kettering University	R
Theory Of Computation	Hendrix College	С

Algorithms and Complexity (Page 2)

 Table B.6: Example of Algorithms and Complexity(Page 2)

Artificial Intelligence

Course Name	College or University	Req Ind
Artificial Intelligence	Amherst College	С
Artificial Intelligence	Bethel University	R
Artificial Intelligence	Princeton University	С
Artificial Intelligence	Calvin College	С
Artificial Intelligence	Rochester, University of	R
Artificial Intelligence	Hendrix College	С
Artificial Intelligence I	Texas Arlington, University of	R
Introduction To Artificial Intelli- gence	Michigan State University	С
Introduction To Artificial Intelli- gence	California Berkely, University of	С
Introduction To Artificial Intelli- gence	Rhode Island College	С
Introduction To Robotics And Artificial Intelligence	Virginia's College at Wise, University of	С
Practicum in Artificial Intelligence	Cornell University	С

 Table B.7: Example of Artificial Intelligence

Assembly Language Programming

Course Name	College or University	Req Ind
Assembly Language	South Dakota School of Mines and Technology	R

 Table B.8: Example of Assembly Language Programming

Automata Theory

Course Name	College or University	Req Ind
Automata Theory	Northern Arizona University	R
Introduction To Formal Languages And Automata Theory	Virginia Polytechnic Institute and State University	С
Theory Of Computation	Princeton University	С
Theory Of Computation	Worcester Polytechnic	С

 Table B.9: Example of Automata Theory

Combinatorics

Course Name	College or University	Req Ind
Introduction to Combinatorial Opti- mization	Wisconsin, University of	С

 Table B.10:
 Example of Combinatorics

Compiler Design

Course Name	College or University	Req Ind
Compiler Construction	West Virginia University Institute of Technology	R
Compiler Design	Amherst College	С
Compiler Optimization	Bucknell University	С
Compiler Theory And Practice	Cedarville University	R
Compiler Writing	New Mexico Institute of Mining and Technology	R
Compiling Techniques	Princeton University	С
Introduction To Programming Lan- guages And Compilers	Wisconsin, University of	С
Practicum in Compilers	Cornell University	С
Special Topics In Computer Science: Compiler Design	Calvin College	С
Techniques Of Programming Lan- guage Translation	Worcester Polytechnic	С
Translation Of Programming Lan- guages	Michigan State University	С

Table B.11: Example of Compiler Design

Computational Geometry

Course Name	College or University	Req Ind
Computational Geometry	Princeton University	С

Table B.12: Example of Computational Geometry

Computational	Linguistics
---------------	-------------

Course Name	College or University	Req Ind
Introduction To Computational Lin- guistics	Michigan State University	С

Table B.13: Example of Computational Linguistics

Computational Theory

Course Name	College or University	Req Ind
Automata And Computation The- ory	Johns Hopkins University	R
Computation And Formal Systems	Rochester, University of	R
Introduction To Computation The- ory	Rhode Island College	R
Theoretical Concepts In Computer Science And Engineering	Texas Arlington, University of	R
Theoretical Foundations Of Com- puter Science	Amherst College	С
Theoretical Foundations Of Com- puting	Oklahoma State University	R
Theory Of Computation	Midwestern State University	R
Theory Of Computation	Illinois, University of	R
Theory Of Computation	Virginia Polytechnic Institute and State University	С
Theory Of Computation I	Bucknell University	R
Theory Of Computer Science	Oberlin College	R

 Table B.14: Example of Computational Theory

Computer Architecture

Course Name	College or University	Req Ind
Advanced Computer Architecture	Calvin College	С
Architecture And Assembly Lan- guage	Massachusetts Amherst, University of	R
Architecture And Operating Systems	Eastern Mennonite University	R
Computer Architecture	Michigan State University	С
Computer Architecture	Linfield College	R
Computer Architecture	Worcester Polytechnic	С
Computer Architecture	Stevens Institute of Technology	R
Computer Architecture	Virginia's College at Wise, University of	R
Computer Architecture	Bucknell University	С
Computer Architecture	Hendrix College	С
Computer Architecture	New Mexico Institute of Mining and Technology	R
Computer Architecture And Assembly Language	Oregon State University	R
Computer Architecture And Engineering	California Berkely, University of	С
Computer Architecture and Organization	Princeton University	С
Computer Architecture I	Illinois, University of	R
Computer Architecture With As- sembly Language	Lyon College	R
Computer Organization And Archi- tecture II	Rhode Island College	R
Introduction To Computer Architec- ture	Midwestern State University	R

 Table B.15: Example of Computer Architecture

Computer Architecture (Page 2)

Course Name	College or University	Req Ind
Introduction To Computer Architec- ture	Wisconsin, University of	С
Introduction To Computer Organization II	Virginia Polytechnic Institute and State University	R

 Table B.16:
 Example of Computer Architecture(Page 2)

Computer Architecture II

Course Name	College or University	Req Ind
Computer Architecture II	Illinois, University of	R

 Table B.17: Example of Computer Architecture II

Computer Graphics

Course Name	College or University	Req Ind
Computer Graphics	Michigan State University	С
Computer Graphics	Wisconsin, University of	С
Computer Graphics	Princeton University	С
Computer Graphics	Cedarville University	С
Computer Graphics	Calvin College	С
Computer Graphics	Bucknell University	С
Computer Graphics And Animation	Linfield College	R
Computer Graphics Practicum	Cornell University	С
Foundations Of Computer Graphics	California Berkely, University of	С

Table B.18: Example of Computer Graphics

Course Name	College or University	Req Ind
Computer Models And Limitations	Rochester, University of	R

 Table B.19: Example of Computer Models

Computer Organization and Assembly Language

Course Name	College or University	Req Ind
Computer Organization	Abilene Christian University	R
Computer Organization	Pace University	R
Computer Organization	Cornell University	С
Computer Organization	Rochester, University of	R
Computer Organization	Texas A & M	R
Computer Organization	Oberlin College	R
Computer Organization & Architec- ture	Texas Arlington, University of	R
Computer Organization & Digital Circuits	William Penn University	R
Computer Organization And Archi- tecture	Michigan State University	R
Computer Organization And Archi- tecture	South Dakota School of Mines and Technology	R
Computer Organization And Archi- tecture I	Rhode Island College	R
Computer Organization And Pro- gramming	Duke University	R
Computer Organization And Pro- gramming	Stevens Institute of Technology	R
Computer Organization And Pro- gramming	Bucknell University	R

 Table B.20:
 Example of Computer Organization and Assembly Language

Course Name	College or University	Req Ind
Computer Organization/assembly Language	Maine at Fort Kent, University of	С
Introduction To Computer Organization	Northern Arizona University	R
Introduction To Computer Organization	West Virginia University Institute of Technology	R
Introduction To Computer Organization I	Virginia Polytechnic Institute and State University	R

Computer Organization and Assembly Language (Page 2)

 Table B.21: Example of Computer Organization and Assembly Language(Page 2)

Course Name	College or University	Req Ind
Capstone Computer Science Design	Bucknell University	R
Capstone Experience	Northern Arizona University	R
Capstone Project	Linfield College	R
Capstone: Computer Science	Pittsburgh Bradford, University of	R
Computer Science Project I	Christian Brothers University	R
Computer Science Seminar	Virginia's College at Wise, University of	R
Professional Development Seminar	William Penn University	R
Seminar In Social Responsibility	Midwestern State University	R
Senior Capstone Design	Texas A & M	R
Senior Design I	South Dakota School of Mines and Technology	R
Senior Design Project	Johns Hopkins University	С
Senior Design Project	Kentucky, University of	R
Senior Project	West Virginia University Institute of Technology	R
Senior Project In Computing	Calvin College	R
Senior Projects In Computer Science	Nevada, Reno, University of	R
Senior Seminar	Abilene Christian University	R
Senior Software Engineering Project	Oregon State University	R

Computer Science Capstone

 Table B.22: Example of Computer Science Capstone

Course Name	College or University	Req Ind
Computer Science Project II	Christian Brothers University	R
Senior Design II	South Dakota School of Mines and Technology	R
Senior Project In Computing II	Calvin College	R
Senior Software Engineering Project	Oregon State University	R

Computer Science Capstone II

 Table B.23: Example of Computer Science Capstone II

Computer Science Capstone III

Course Name	College or University	Req Ind
Senior Software Engineering Project	Oregon State University	R

 Table B.24:
 Example of Computer Science Capstone III

Computer Science Honors Thesis

Course Name	College or University	$\begin{array}{c} \operatorname{Req} \\ \operatorname{Ind} \end{array}$
Computer Science Honors Thesis	Bucknell University	С

 Table B.25: Example of Computer Science Honors Thesis

Computer Vision

Course Name	College or University	Req Ind
Computer Vision	Princeton University	С

Table B.26: Example of Computer Vision

Course Name	College or University	Req Ind
Computing For The Physical And Social Sciences	Princeton University	С

Computing for Other Majors

Table B.27: Example of Computing for Other Majors

Cross-disciplinary Project

Course Name	College or University	Req Ind
Cross-disciplinary Project	Hendrix College	С

Table B.28: Example of Cross-disciplinary Project

Cryptography

Course Name	College or University	Req Ind
Cryptography	Princeton University	С

 Table B.29:
 Example of Cryptography

Data Communications and Networking

Course Name	College or University	Req Ind
Advanced Computer Networks	Calvin College	С
Computer & Network Management	William Penn University	R
Computer Networks	Michigan State University	С

 Table B.30:
 Example of Data Communications and Networking

Course Name	College or University	Req Ind
Computer Networks	Princeton University	С
Computer Networks	Cornell University	С
Computer Networks	Worcester Polytechnic	С
Computer Networks	Oklahoma State University	R
Computer Networks	Virginia's College at Wise, University of	R
Computer Networks	Bucknell University	С
Computer Networks And The Inter- net	Pace University	R
Data And Computer Communica- tion	New Mexico Institute of Mining and Technology	R
Data Communications And Com- puter Networks	Bethel University	R
Data Communications And Net- working	Christian Brothers University	R
Fundamentals of Networking and Data Communications	Abilene Christian University	R
Introduction To Computer Networks	Wisconsin, University of	С
Introduction To Computer Networks	Oregon State University	R
Introduction To Data And Com- puter Communications	Rhode Island College	С
Introduction To Networking	West Virginia University Institute of Technology	R
Networking	Lyndon State College	R
Networking	Maine at Fort Kent, University of	С
Networking And Data Communica- tions	Eastern Mennonite University	R
Networks And Cryptography	Amherst College	С

Data Communications and Networking (Page 2)

Table B.31: Example of Data Communications and Networking(Page 2)

Data Structures

Course Name	College or University	Req Ind
Data Structure	Pittsburgh Bradford, University of	R
Data Structures	Midwestern State University	R
Data Structures	Illinois, University of	R
Data Structures	Johns Hopkins University	R
Data Structures	West Virginia University Institute of Technology	R
Data Structures	Christian Brothers University	R
Data Structures	Northern Arizona University	R
Data Structures	Oregon State University	R
Data Structures	Stevens Institute of Technology	R
Data Structures	Nevada, Reno, University of	R
Data Structures	Eastern Mennonite University	R
Data Structures	California Berkely, University of	R
Data Structures	Virginia's College at Wise, University of	R
Data Structures	South Dakota School of Mines and Technology	R
Data Structures	Southern California, University of	R
Data Structures And Functional Programming	Cornell University	R
Data Structures And Objects	Bethel University	R
Data Structures Using Java	Cedarville University	R
Introduction To Data Structures	Wisconsin, University of	R
Introduction To Data Structures	Calvin College	R
Programming With Data Structures	Massachusetts Amherst, University of	R

 Table B.32:
 Example of Data Structures

Data Structures (Page 2)

Course Name	College or University	Req Ind
Software Design And Data Struc- tures	Virginia Polytechnic Institute and State University	R
The Science Of Data Structures	Rochester, University of	R

 Table B.33:
 Example of Data Structures(Page 2)

Course Name	College or University	Req Ind
Algorithms & Data Structures	Texas Arlington, University of	R
Algorithms And Data Structures	Michigan State University	R
Algorithms And Data Structures	Lyndon State College	R
Algorithms And Data Structures	Princeton University	R
Algorithms And Data Structures	Bucknell University	R
Algorithms And Data Structures	New Mexico Institute of Mining and Technology	R
Data Structures & Algorithm Anal- ysis	William Penn University	R
Data Structures And Algorithm Analysis I	Oklahoma State University	R
Data Structures And Algorithms	Virginia Polytechnic Institute and State University	R
Data Structures And Algorithms	Brigham Young University	R
Data Structures And Algorithms	Calvin College	R
Data Structures And Algorithms	Texas A & M	R
Data Structures And Algorithms I	Amherst College	R
Data Structures And Algorithms I	Pace University	R
Data Structures And Algorithms I	Lyon College	R
Fundamental Data Structures And Algorithms	Carnegie Mellon University	R

Data Structures And Algorithms

 Table B.34:
 Example of Data Structures And Algorithms

Course Name	College or University	Req Ind
Data Structures And Algorithms II	Amherst College	R
Data Structures And Algorithms II	Pace University	R
Data Structures And Algorithms II	Lyon College	R

 Table B.35:
 Example of Data Structures And Algorithms II

Data Structures and Algorithms Using OO

Course Name	College or University	Req Ind
Introduction To Computer Science II	Bucknell University	R

Table B.36: Example of Data Structures and Algorithms Using OO

Database Concepts

Course Name	College or University	Req Ind
Data Base Design	Christian Brothers University	R
Database And Information Manage- ment Systems	Princeton University	С
Database Design And Applications	Virginia's College at Wise, University of	R
Database Management	West Virginia University Institute of Technology	R
Database Management Information Systems	William Penn University	R
Database Management Systems	Linfield College	R

 Table B.37:
 Example of Database Concepts

Database Concepts (Page 2)

Course Name	College or University	Req Ind
Database Management Systems	Stevens Institute of Technology	R
Database Management Systems	Calvin College	С
Database Management Systems	South Dakota School of Mines and Technology	R
Database Management Systems: Design And Implementation	Wisconsin, University of	С
Database Organization And Design	Cedarville University	R
Database Systems	Michigan State University	С
Database Systems	Lyndon State College	R
Database Systems	Bethel University	R
Database Systems	Hendrix College	С
Database Systems And File Struc- tures	Texas Arlington, University of	R
Database Systems I	Worcester Polytechnic	С
Databases	Maine at Fort Kent, University of	С
Databases And Information Man- agement	Eastern Mennonite University	R
Introduction To Database	Bucknell University	С
Introduction To Database Systems	California Berkely, University of	С
Introduction To Database Systems	Rhode Island College	С
Introduction To Databases	Oregon State University	R
Introduction to Databases and Database Management Systems	Abilene Christian University	R
Practicum in Database Systems	Cornell University	С

Table B.38: Example of Database Concepts(Page 2)

Discrete Mathematics

Course Name	College or University	Req Ind
Discrete Math For Computer Science	Duke University	R
Discrete Mathematics	Kentucky, University of	R
Discrete Mathematics	Kettering University	R
Discrete Mathematics And Proba- bility Theory	California Berkely, University of	R
Discrete Mathematics For Computer Science	Oklahoma State University	R
Discrete Methods In Computer Science	Southern California, University of	R
Discrete Structures	Illinois, University of	R
Discrete Structures	Brigham Young University	R
Discrete Structures	West Virginia University Institute of Technology	R
Discrete Structures	Cornell University	R
Discrete Structures	Texas Arlington, University of	R
Discrete Structures For Computing	Texas A & M	R
Discrete Structures In Computer Science	Michigan State University	R
Introduction To Computation	Massachusetts Amherst, University of	С
Introduction To Discrete Mathemat- ics	Wisconsin, University of	R

 Table B.39:
 Example of Discrete Mathematics

Distributed Computing

Course Name	College or University	Req Ind
Distributed Computing	Bucknell University	С
Distributed Computing Systems	Worcester Polytechnic	С

Table B.40: Example of Distributed Computing

Finite Structures

Course Name	College or University	Req Ind
Finite Structures	South Dakota School of Mines and Technology	R

 Table B.41: Example of Finite Structures

Functional Programming

Course Name	College or University	Req Ind
Functional Programming	Rhode Island College	С

 Table B.42: Example of Functional Programming

Genomics and Computational Molecular Biology

Course Name	College or University	Req Ind
Introduction to Genomics and Com- putational Molecular Biology	Princeton University	С

 Table B.43: Example of Genomics and Computational Molecular Biology

Graph Theory

Course Name	College or University Req Ind
Graphs, Their Algorithms, And Software Engineering	Bucknell University C
Introduction to Graph Theory	Princeton University C

 Table B.44: Example of Graph Theory

Great Theoretical Ideas In Computer Science

Course Name	College or University	Req Ind
Great Theoretical Ideas In Computer Science	Carnegie Mellon University	R

 Table B.45: Example of Great Theoretical Ideas In Computer Science

High Performance Computing

Course Name	College or University	Req Ind
High Performance Computing	Calvin College	С

 Table B.46: Example of High Performance Computing

Honors

Course Name	College or University	Req Ind
Senior Departmental Honors	Amherst College	С

 Table B.47: Example of Honors

Human Computer Interface

Course Name	College or University	Req Ind
Graphical User Interfaces	South Dakota School of Mines and Technology	R
Human-computer Interaction	Worcester Polytechnic	С
Human-computer Interface Technol- ogy	Princeton University	С
Introduction To Human - Computer Interaction	Virginia's College at Wise, University of	С
Introduction To Usability Engineer- ing	Oregon State University	R
User Interface Design And Develop- ment	California Berkely, University of	С

 Table B.48: Example of Human Computer Interface

Independent Study

Course Name	College or University	Req Ind
Independent Study In Computer Science	Cedarville University	С
Individual Study In Computer Science	Bucknell University	С
Junior Independent Work	Princeton University	С
Junior Independent Work	Princeton University	С
Senior Independent Work	Princeton University	С
Senior Independent Work	Princeton University	С

 Table B.49:
 Example of Independent Study

Independent Study II

Course Name	College or University	Req Ind
Independent Study In Science	Computer Cedarville University	С

Table B.50: Example of Independent Study II

Information Retrieval

Course Name	College or University	Req Ind
Information Characteristics	Virginia's College at Wise, University of	С
Information Retrieval	Michigan State University	С
Information Retrieval, Discovery, And Delivery	Princeton University	С

 Table B.51: Example of Information Retrieval

Information Structures

Course Name	College or University	Req Ind
Information Structures	Rhode Island College	R
Introduction To Information Struc- tures	Pittsburgh Bradford, University of	R

 Table B.52:
 Example of Information Structures

Interacting with Data

Course Name	College or University	Req Ind
Interacting with Data	Princeton University	С

 Table B.53:
 Example of Interacting with Data

Internet Auctions: Theory And Practice

Course Name		College or University	Req Ind
Internet Auctions: Practice	Theory And	Princeton University	С

 Table B.54:
 Example of Internet Auctions: Theory And Practice

Internship

Course Name	College or University	Req Ind
Computer Science Internship	Cedarville University	С
Internship In Computer Science	Lyndon State College	R
Internship In Computer Science	Christian Brothers University	R
Programming Practicum	Hendrix College	R

 Table B.55:
 Example of Internship

Introduction To Computing Using Matlab

Course Name	College or University	Req Ind
Introduction To Computing Using Matlab	Cornell University	С
Introduction To Computing Using Matlab And Robotics	Cornell University	С

 Table B.56:
 Example of Introduction To Computing Using Matlab

Introduction To Engineering

Course Name	College or University	Req Ind
Introduction To Engineering	Texas Arlington, University of	R

 Table B.57: Example of Introduction To Engineering

Introduction To Programming

Course Name	College or University	Req Ind
Advanced Visual Basic	Lyndon State College	R
Introduction to Java Programming	Rhode Island College	C
Introduction To Programming	Abilene Christian University	R
Introduction To Programming: Functions	Linfield College	R

 Table B.58: Example of Introduction To Programming

Course Name	College or University	Req Ind
Computer Science 1	Bethel University	R
Computer Science Orientation	Oregon State University	R
Concepts Of Computer Science	Pittsburgh Bradford, University of	R
Foundations Of Computer Science I	Hendrix College	R
Fundamentals Of Computer Science	Christian Brothers University	R
General Computer Science	Princeton University	R
Intro To Computer Science	Illinois, University of	R
Introduction To Computer Science	Maine at Fort Kent, University of	R
Introduction to Computer Science	Abilene Christian University	R
Introduction To Computer Science	Stevens Institute of Technology	R
Introduction To Computer Science And Engineering	Texas Arlington, University of	R
Introduction To Computer Science And Information Technology	New Mexico Institute of Mining and Technology	R
Introduction To Computer Science I	Amherst College	R
Introduction To Computer Science I	Bucknell University	R
Introduction To Computing	Nevada, Reno, University of	R
Introduction To Computing	Calvin College	R
Introduction To Computing	Texas A & M	R
Principles Of Computer Science I	Oberlin College	R

Introduction to Computer Science

 Table B.59: Example of Introduction to Computer Science

Linear Programming

Course Name	College or University	Req Ind
Linear Programming Methods	Wisconsin, University of	С

Table B.60: Example of Linear Programming

Logic Design

Course Name	College or University	Req Ind
Digital Logic	Virginia's College at Wise, University of	С
Logic And Theory Of Computing	Kentucky, University of	R
Logic Design	Midwestern State University	R

 Table B.61: Example of Logic Design

Machine Organization

Course Name	College or University	Req Ind
Machine Organization And Pro- gramming	Wisconsin, University of	R
Machine Structures	California Berkely, University of	R

 Table B.62:
 Example of Machine Organization

Mathematics Of Computer Science

Course Name	College or University	Req Ind
Mathematical Foundations Of Com- puter Science	Duke University	R
Mathematical Foundations Of Com- puter Science	Lyon College	R
Mathematics Of Computer Science	Nevada, Reno, University of	R

Table B.63: Example of Mathematics Of Computer Science

Media Computing

Course Name	College or University	Req Ind
Introduction To Media Computa- tion	Virginia Polytechnic Institute and State University	R
Media Processing And Multimedia Computing	Michigan State University	С

Table B.64: Example of Media Computing

Microcomputers

Course Name	College or University	Req Ind
Microcomputer Organization	Kentucky, University of	R
Microcomputers I	Kettering University	R

 Table B.65:
 Example of Microcomputers

Microcontroller Architecture Programming

Course Name			College or University	Req Ind
Microcontroller gramming	Architecture	Pro-	Pittsburgh Bradford, University of	R

 Table B.66:
 Example of Microcontroller Architecture Programming

Numerical Methods

Course Name	College or University	Req Ind
Advanced CS Math	West Virginia University Institute of Technology	R
Introduction To Numerical Methods	Wisconsin, University of	С
Introduction To Numerical Methods	Kentucky, University of	R
Introduction To Numerical Methods And Analysis	Duke University	R
Numerical Analysis	Wisconsin, University of	С
Numerical Analysis	Calvin College	С
Numerical Analysis Methods	William Penn University	R
Numerical Linear Algebra	Wisconsin, University of	С
Numerical Methods	Bethel University	С
Numerical Methods For Digital Computers	Oklahoma State University	R
Numerical Methods I	Illinois, University of	R

 Table B.67: Example of Numerical Methods

Numerical Methods II

Course Name	College or University	Req Ind
Numerical Methods II	Illinois, University of	R

 Table B.68: Example of Numerical Methods II

Course Name	College or University	Req Ind
Introduction To Object Oriented Programming	New Mexico Institute of Mining and Technology	R
Object Oriented Design	Christian Brothers University	R
Object Oriented Problem Solving	Lyndon State College	R
Object-oriented & Event-driven Programming	Texas Arlington, University of	R
Object-oriented Design Concepts	Worcester Polytechnic	R
Object-oriented Design Using C++	Cedarville University	R
Object-oriented Programming	Abilene Christian University	R
Object-oriented Programming	Southern California, University of	R
Object-oriented Programming And Data Structures	Cornell University	С
Object-oriented Software Design	Michigan State University	R

Object Oriented Programming

 Table B.69:
 Example of Object Oriented Programming

Object-Oriented Design

Course Name	College or University	Req Ind
Foundations Of Computer Science II	Hendrix College	R
Object-oriented Analysis And De- sign	Worcester Polytechnic	С
Object-oriented Software Engineer- ing	Johns Hopkins University	С

Table B.70: Example of Object-Oriented Design

Operating Systems

Course Name	College or University	Req Ind
Advanced Operating Systems	Amherst College	С
Design And Implementation Of Op- erating Systems I	Oklahoma State University	R
Introduction To Operating Systems	Duke University	R
Introduction To Operating Systems	Midwestern State University	R
Introduction To Operating Systems	Wisconsin, University of	С
Introduction to Operating Systems	Kentucky, University of	R
Operating Systems	Michigan State University	R
Operating Systems	William Penn University	R
Operating Systems	Princeton University	С
Operating Systems	Worcester Polytechnic	С
Operating Systems	Christian Brothers University	R
Operating Systems	Northern Arizona University	R
Operating Systems	Stevens Institute of Technology	R
Operating Systems	Cedarville University	R
Operating Systems	Kettering University	R
Operating Systems	Lyon College	R
Operating Systems	South Dakota School of Mines and Technology	R
Operating Systems	Southern California, University of	R
Operating Systems	Texas Arlington, University of	R
Operating Systems And Computer Architecture	Bethel University	R
Operating Systems And Computer Architecture	Rhode Island College	R
Operating Systems And Concurrent Computing	Hendrix College	С

 Table B.71: Example of Operating Systems

Operating Systems (Page 2)

Course Name	College or University	Req Ind
Operating Systems And Networking	Linfield College	R
Operating Systems And Networking	Calvin College	R
Operating Systems And System Programming	California Berkely, University of	R
Operating Systems Design	Brigham Young University	R
Operating Systems Design	Bucknell University	R
Operating Systems I	Oregon State University	R
Operating Systems: Theory And Practice	Virginia's College at Wise, University of	R
Practicum in Operating Systems	Cornell University	С
Principles Of Operating Systems	Nevada, Reno, University of	R
Principles Of Operating Systems	New Mexico Institute of Mining and Technology	R

Table B.72: Example of Operating Systems(Page 2)

Operating Systems II

Course Name	College or University	Req Ind
Operating Systems II	Oregon State University	R

 Table B.73:
 Example of Operating Systems II

Course Name	College or University	Req Ind
Operations Research	Bethel University	С

Table B.74: Example of Operations Research

Operations Workshop I

Course Name	College or University	Req Ind
Operations Workshop I	West Virginia University Institute of Technology	R

Table B.75: Example of Operations Workshop I

Parallel Computing

Course Name	College or University	Req Ind
Parallel Computing	Cedarville University	С

Table B.76: Example of Parallel Computing

Perspectives On Computing

Course Name	College or University	Req Ind
Perspectives On Computing	Calvin College	R

Table B.77: Example of Perspectives On Computing

Pervasive	Information	Systems
-----------	-------------	---------

Course Name	College or University	Req Ind
Pervasive Information Systems	Princeton University	С

 Table B.78: Example of Pervasive Information Systems

Portfolio

Course Name	College or University	Req Ind
Portfolio	Lyndon State College	R

Table B.79: Example of Portfolio

Problems Solving

Course Name	College or University	Req Ind
Introduction To Problem Solving In Computer Science	Virginia Polytechnic Institute and State University	R
Introduction To Problem Solving With Computers	Massachusetts Amherst, University of	R

 Table B.80:
 Example of Problems Solving

Program Design

Course Name	College or University	Req Ind
Introduction To Program Design	Worcester Polytechnic	С
Introduction To Program Design And Concepts	Texas A & M	R
Introduction To Program Design, Abstraction, And Problem Solving	Kentucky, University of	R
Program Design And Analysis II	Duke University	R

Table B.81: Example of Program Design

Program Design II

Course Name	College or University	Req Ind
Accelerated Introduction To Pro- gram Design	Worcester Polytechnic	С

 Table B.82:
 Example of Program Design II

Programming I

Course Name	College or University	Req Ind
Beginning Programming: Objects	Linfield College	R
C Programming	Oklahoma State University	R
C++ Programming	Lyndon State College	R
C++ Programming	Cedarville University	R
Computer Programming I	Pace University	R
Computer Programming I	Rhode Island College	R
Computer Science 1	West Virginia University Institute of Technology	R
Computer Science I	Midwestern State University	R
Computer Science I	Northern Arizona University	R
Computer Science I	Nevada, Reno, University of	R
Computer Science I	South Dakota School of Mines and Technology	R
Concurrent Programming	Stevens Institute of Technology	R
Foundations Of Computer Program- ming In C/(No Suggestions)	Virginia's College at Wise, University of	R
Fundamentals Of Computer Pro- gramming	Southern California, University of	R
Introduction To Computer Pro- gramming	Brigham Young University	R
Introduction To Computer Pro- gramming	Kentucky, University of	R
Introduction To Computer Science	Pittsburgh Bradford, University of	R
Introduction To Computer Science	Christian Brothers University	R
Introduction To Computer Science I	Oregon State University	R
Introduction To Computing Using Java	Cornell University	С

 Table B.83:
 Example of Programming I

Programming I (Page 2)

Course Name	College or University	Req Ind
Introduction To Programming	Wisconsin, University of	R
Introduction To Programming	Maine at Fort Kent, University of	R
Introduction To Programming	Bethel University	R
Introduction To Programming	New Mexico Institute of Mining and Technology	R
Introduction To Programming I	Michigan State University	R
Introduction To Programming I	Lyon College	R
Introduction To Programming In Java	Johns Hopkins University	R
Introduction To Programming Sys- tems	Princeton University	R
Principles Of Programming	Carnegie Mellon University	R
Programming Abstractions	Oberlin College	R
Programming I	Abilene Christian University	R
Programming Techniques	William Penn University	R
The Science Of Programming	Rochester, University of	R

Table B.84: Example of Programming I(Page 2)

Programming II

Course Name	College or University	Req Ind
Advanced Programming Concepts	Brigham Young University	R
Advanced Programming Techniques	Princeton University	С
Computer Programming – C++	Maine at Fort Kent, University of	С
Computer Programming II	Pace University	R
Computer Programming II	Rhode Island College	R

 Table B.85:
 Example of Programming II

Programming II (Page 2)

Course Name	College or University	Req Ind
Computer Science 2	Bethel University	R
Computer Science 2	West Virginia University Institute of Technology	R
Computer Science II	Midwestern State University	R
Computer Science II	Northern Arizona University	R
Computer Science II	Nevada, Reno, University of	R
Computer Science II	South Dakota School of Mines and Technology	R
Intermediate Programming	Johns Hopkins University	R
Intermediate Programming	Texas Arlington, University of	R
Intermediate Programming: Data Abstractions	Linfield College	R
Intermediate Programming: Java	Eastern Mennonite University	R
Intermediate/advanced Programming	Carnegie Mellon University	R
Introduction To Computer Science II	Amherst College	R
Introduction To Computer Science II	Oregon State University	R
Introduction To Programming II	Michigan State University	R
Introduction To Programming II	Lyon College	R
Java Programming	Lyndon State College	R
Principles Of Computer Science II	Oberlin College	R
Programming Ii: Data Structures	Abilene Christian University	R
Programming In Java	Virginia's College at Wise, University of	С

 Table B.86:
 Example of Programming II(Page 2)

Programming Languages

Course Name	College or University	Req Ind
Comparative Languages	Virginia Polytechnic Institute and State University	R
Computability And Formal Lan- guage Theory	Michigan State University	С
Concepts Of Programming Lan- guages	Brigham Young University	R
Formal Languages And Automata	New Mexico Institute of Mining and Technology	R
Foundations Of Computer Science	Worcester Polytechnic	С
Functional Languages And Parsing	Kettering University	R
Introduction to the Theory and Design of Programming Languages	Wisconsin, University of	С
Organization Of Programming Lan- guages	Michigan State University	С
Organization Of Programming Lan- guages	Bethel University	R
Organization Of Programming Lan- guages	Oklahoma State University	R
Organization Of Programming Lan- guages	Rhode Island College	R
Principles Of Languages	Northern Arizona University	R
Principles Of Programming Lan- guages	West Virginia University Institute of Technology	R
Principles Of Programming Lan- guages	Stevens Institute of Technology	R
Programming Language Concepts	Calvin College	R
Programming Language Fundamen- tals	Oregon State University	R
Programming Language Paradigms	Amherst College	С

 Table B.87: Example of Programming Languages

Course Name	College or University	Req Ind
Programming Language Survey	Cedarville University	R
Programming Languages	Princeton University	С
Programming Languages	Eastern Mennonite University	R
Programming Languages	Lyon College	R
Programming Languages	Virginia's College at Wise, University of	R
Programming Languages	South Dakota School of Mines and Technology	R
Programming Languages	Texas A & M	R
Programming Languages	Texas Arlington, University of	R
Programming Languages And Com- pilers	California Berkely, University of	С
Programming Languages and Logics	Cornell University	R
Programming Languages, Concepts And Implementation	Nevada, Reno, University of	R
Survey Of Programming Languages	Hendrix College	С
Topics In Contemporary Program- ming Languages	Midwestern State University	R

Programming Languages (Page 2)

 Table B.88:
 Example of Programming Languages(Page 2)

Programming Languages II

Course Name	College or University	Req Ind
Automata And Formal Languages	Nevada, Reno, University of	R
Principles Of Programming Lan- guages	New Mexico Institute of Mining and Technology	R
Programming Language Design	Bucknell University	R
Programming Language Design & Implementation	Rochester, University of	R
Programming Languages	Worcester Polytechnic	С

 Table B.89:
 Example of Programming Languages II

Programming Methodology

Course Name	College or University	Req Ind
Programming Methodology	Massachusetts Amherst, University of	С

 Table B.90:
 Example of Programming Methodology

Programming Studio

Course Name	College or University	Req Ind
Programming Studio	Illinois, University of	R
Programming Studio	Texas A & M	R

Table B.91: Example of Programming Studio

Course Name	College or University	Req Ind
Advanced Visual Basic Program- ming	Rhode Island College	С
C++ Programming	Rhode Island College	С
Computer Programming – Cobol	Maine at Fort Kent, University of	С
Computer Programming – Fortran	Maine at Fort Kent, University of	С
Computer Programming – Visual Basic	Maine at Fort Kent, University of	С
Programming In C#	Virginia's College at Wise, University of	С

Programming in Another Language

 Table B.92:
 Example of Programming in Another Language

Reasoning About Computation And Uncertainty

Course Name	College or University	Req Ind
Reasoning About Computation	Princeton University	С
Reasoning About Uncertainty	Massachusetts Amherst, University of	С

 Table B.93: Example of Reasoning About Computation And Uncertainty

Scientific Computing

Course Name	College or University	Req Ind
Foundations of Scientific Computing	Wisconsin, University of	С
Scientific Computing	Hendrix College	С

Table B.94: Example of Scientific Computing

Security

Course Name	College or University	Req Ind
Computer And Network Security	Bucknell University	С
Computer Security	Lyndon State College	R
Computer Security	California Berkely, University of	С
Computer Security	Calvin College	С
Information Security	Princeton University	С
Information Security	Virginia's College at Wise, University of	С
Introduction To Computer Security	Michigan State University	С
Introduction to IT Security	Stevens Institute of Technology	R
Network Security	Cedarville University	С

Table B.95: Example of Security

Seminar

Course Name	College or University	Req Ind
Introductory Computing Seminar	Calvin College	R
Seminar	Texas A & M	R
Seminar In Computer Science	Amherst College	С
Senior Seminar	Hendrix College	С
Undergraduate Problem Seminar	Rochester, University of	R

 Table B.96:
 Example of Seminar

Seminar II

Course Name	College or University	Req Ind
Computing Seminar	Calvin College	R
Professional Development Seminar II	William Penn University	R

Table B.97: Example of Seminar II

Senior Design I

Course Name	College or University	Req Ind
Collaborative Design	Michigan State University	R
Senior Design I	Bucknell University	С

 Table B.98: Example of Senior Design I

Senior Design II

Course Name	College or University	Req Ind
Senior Design II	Bucknell University	С

 Table B.99:
 Example of Senior Design II

Course Name	College or University	Req Ind
Computer Ethics Theory And Prac- tice	Johns Hopkins University	R
Computers And Society	Bucknell University	R
Ethics And Computers In Society	Brigham Young University	R
Legal, Ethical, and Social Issues of Information Technology	New Mexico Institute of Mining and Technology	R
Social And Ethical Impact Of Computing	Pittsburgh Bradford, University of	R
Social And Ethical Issues In Computer Science	Northern Arizona University	R
Social And Ethical Issues In Computer Science	Oregon State University	R
Social Implications Of Information Processing	Worcester Polytechnic	С
Social Issues In Computing	Massachusetts Amherst, University of	R

Social and Ethical Issues in Computer Science

 Table B.100:
 Example of Social and Ethical Issues in Computer Science

Software Design

Course Name	College or University	Req Ind
Software Design And Implementa- tion	Duke University	R
Software Design And Testing	Brigham Young University	R

Table B.101: Example of Software Design

Software Development

Course Name	College or University	Req Ind
Principles Of Software Development	Southern California, University of	R
Software Development Process	Stevens Institute of Technology	R

Table B.102: Example of Software Development

Software Engineering

Course Name	College or University	Req Ind
Fundamentals Of Software Engi- neering	Texas Arlington, University of	R
Intro Software Engineering	West Virginia University Institute of Technology	R
Introduction To Software Design	Virginia Polytechnic Institute and State University	R
Introduction To Software Engineer- ing	Kentucky, University of	R
Introduction To Software Engineer- ing	Southern California, University of	R
Software Engineering	Midwestern State University	R
Software Engineering	Michigan State University	С
Software Engineering	Linfield College	R
Software Engineering	Bethel University	R
Software Engineering	California Berkely, University of	С
Software Engineering	Worcester Polytechnic	С
Software Engineering	Northern Arizona University	R
Software Engineering	Nevada, Reno, University of	R
Software Engineering	Kettering University	R
Software Engineering	Calvin College	R

 Table B.103:
 Example of Software Engineering

Software Engineering (Page 2)

Course Name	College or University	Req Ind
Software Engineering	Virginia's College at Wise, University of	R
Software Engineering	South Dakota School of Mines and Technology	R
Software Engineering	Hendrix College	С
Software Engineering	Rhode Island College	R
Software Engineering	New Mexico Institute of Mining and Technology	R
Software Engineering I	Oregon State University	R
Software Engineering I	Cedarville University	R
Software Engineering Practice I	Stevens Institute of Technology	R
Software Engineering Project	William Penn University	R

Table B.104: Example of Software Engineering(Page 2)

Software Engineering II

Course Name	College or University	Req Ind
Software Engineering II	Oregon State University	R
Software Engineering II	Cedarville University	R
Software Engineering Practice II	Stevens Institute of Technology	R

 Table B.105:
 Example of Software Engineering II

Course Name	College or University	Req Ind
Design And Construction Of Large Software Systems	Southern California, University of	R

Table B.106: Example of Software Systems

Software Testing

Course Name	College or University	Req Ind
Software Testing	Rhode Island College	С

Table B.107: Example of Software Testing

Sophomore Seminar

Course Name	College or University	Req Ind
Sophomore Seminar	West Virginia University Institute of Technology	R

 Table B.108:
 Example of Sophomore Seminar

Structure of Programs

Course Name	College or University	Req Ind
The Structure And Interpretation Of Computer Programs	California Berkely, University of	R

 Table B.109:
 Example of Structure of Programs

Survey Of Information Assurance And Security

Course Name	College or University	Req Ind
Survey Of Information Assurance And Security	Maine at Fort Kent, University of	С

 Table B.110: Example of Survey Of Information Assurance And Security

Systems

Course Name	College or University	Req Ind
Components And Design Techniques For Digital Systems	California Berkely, University of	С
Computer System Concepts	West Virginia University Institute of Technology	R
Computer System Fundamentals	Johns Hopkins University	R
Computer Systems	Virginia Polytechnic Institute and State University	R
Computer Systems I	Amherst College	R
Computer Systems Modeling Funda- mentals	Wisconsin, University of	С
Digital System Fundamentals	Wisconsin, University of	R
Digital Systems I	Kettering University	R
Introduction To Computer Systems	Brigham Young University	R
System Analysis And Design Methodology	West Virginia University Institute of Technology	R
System Analysis And Design Methods	William Penn University	R
Systems Analysis And Design	Maine at Fort Kent, University of	С

Table B.111: Example of Systems

Systems II

Course Name	College or University	Req Ind
Computer System Design Project II	Texas Arlington, University of	R
Computer Systems II	Amherst College	R

Table B.112: Example of Systems II

Systems Programming

Course Name	College or University	Req Ind
Computer System Design Project I	Texas Arlington, University of	R
Computer System Organization	New Mexico Institute of Mining and Technology	R
Computer Systems	Bethel University	R
Computer Systems	Oklahoma State University	R
Computer Systems Principles	Massachusetts Amherst, University of	С
Computing Systems Organization	Hendrix College	R
Effective Programming In C And Unix	Carnegie Mellon University	R
Introduction To Computer Systems	Carnegie Mellon University	R
Introduction To Computer Systems	Texas A & M	R
System Programming	Illinois, University of	R
Systems Analysis And Design	Lyndon State College	R
Systems Programming	Cornell University	С
Systems Programming	Stevens Institute of Technology	R
Systems Programming	New Mexico Institute of Mining and Technology	R
Systems Programming Concepts	Worcester Polytechnic	R
Systems Programming Concepts	Kettering University	R

 Table B.113:
 Example of Systems Programming

Technical Communication And Analysis

Course Name College or University			Re Ine	-	
Technical Analysis	Communication	And	Hendrix College	R	

 Table B.114:
 Example of Technical Communication And Analysis

The Computing Professional

Course Name	College or University	Req Ind
Professional Practices	Texas Arlington, University of	R
Professionalism In Computing	Virginia Polytechnic Institute and State University	R
The Computer Science Profession	Kentucky, University of	R
The Computing Professional	Kettering University	R

 Table B.115: Example of The Computing Professional

Topics In Computer Science

Course Name	College or University	Req Ind
Advanced Topics In Computer Science	Linfield College	R
Advanced Topics In Computer Science	Cedarville University	С
Advanced Topics In Computer Science	Hendrix College	С
Current Topics In Applied Com- puter Science (web Programming)	William Penn University	R
Special Topics	Amherst College	С
Topics In Computer Science	Bethel University	R
Topics In Computer Science	Cedarville University	С
Topics In Computer Science	Bucknell University	С

 Table B.116:
 Example of Topics In Computer Science

Transforming Reality By Computer

Course Name	College or University	Req Ind
Transforming Reality By Computer	Princeton University	С

 Table B.117: Example of Transforming Reality By Computer

Unix Programming

Course Name	College or University	Req Ind
Fundamentals Of Unix And C Pro- gramming	Pace University	R

Table B.118: Example of Unix Programming

Unix Systems

Course Name	College or University	Req Ind
Unix Systems	Virginia's College at Wise, University of	С

Table B.119: Example of Unix Systems

Web Information Retrieval

Course Name	College or University	Req Ind
Web Information Retrieval	Bucknell University	С

Table B.120: Example of Web Information Retrieval

Course Name	College or University	Req Ind
Internet Fundamentals And Web- page Design	Maine at Fort Kent, University of	С
Internet Programming	Brigham Young University	R
Introduction To Web Programming And Project Development	Stevens Institute of Technology	R
Programming Internet And Web Applications Part I	Lyndon State College	R
Web Applications	Cedarville University	R
Web Programming	Bethel University	R

Table B.121: Example of Web Programming

Web Technologies

Course Name	College or University	Req Ind
Web Technologies	Virginia's College at Wise, University of	С

 Table B.122:
 Example of Web Technologies

Appendix C

Job Search Categories

C.1 Dice

Dice, "The Career Hub for Tech Insiders [5]" "is a career website for technology and engineering professionals [5]". This site is dedicated to technology jobs. This site allows the user to browse jobs by skill rather than by category like many of the other job search web sites. The following are the all the skills dice offers:

.Net	.Net Developer	ASP.net	Business Analyst
С	CCNA	Cisco	Cobol
Data Architect	Data Warehouse	DB2	Desktop Support
Engineering	ETL	HTML	Informatica
Integration	J2EE	Java	JavaScript
Linux	LoadRunner	Oracle	Oracle DBA
PeopleSoft	Perl	PHP	PMP
Project Manager	QA	SAP	SharePoint
Siebel	Software Development	Software Engineer	
SQL	SQL DBA	SQL Server	Systems Administrator
Systems Analyst	Technical Support	Unix	VB.net
VMWare	Web Developer	Weblogic	WebSphere
Windows	XML	~	-

Table C.1: Dice Skills List [6]

Snagajob.com, developed by Shawn Boyer, began in 1999 as a favor for a friend. It allows users to search for part-time and full-time hourly jobs [12]. Snagajob only has one computer related category called "Computers & Technology [13]". Once in the category, snagajob.com lists the companies and the number of jobs available, allowing the user to choose the company to find what computer-related jobs are available.

C.3 Simply Hired

Based in Silicon Valley, SimplyHired's goal is to make finding a job "a simple yet effective, enjoyable journey [10]". SimplyHired displays 50 categories, eight of which are directly computer-related.

ITSystemsQAInternetNetworkingDBA			
0	IT	Systems	QA
	Internet	Networking	DBA
Technology Software	Technology	Software	

 Table C.2: Simply Hired Computer-Related Categories [11]

C.4 Monster

Monster has been providing job-search opportunities for over 10 years in over 50 countries [9]. In its job search, Monster allows the user to narrow the search by selecting from State, Industry, Category, Posting Date, Career Level, Years of Experience, Education Level, and Job Type [8]. There are two main computer-related categories, "Biotech/R&D/Science" and "IT/Software

Development [8]".

C.5 Career Builder

CareerBuilder.com offers 72 categories of jobs, six of which are computer-related.

BiotechnologyComputer HardwareComputer SoftwareInternet - ECommerceTelecommunicationsWireless

 Table C.3: Career Builder Computer-Related Categories [4]

C.6 Yahoo Hot Jobs

Yahoo Hot Jobs offers 42 categories of jobs, five of which are computer-related.

Internet	QA and Quality Control
Software Engineer	Technology
Telecommunication	

Table C.4: Yahoo Hot Jobs Computer-Related Categories

Appendix D

Technology Survey

www.manaraa.com

Technology Survey

Purpose of study

The purpose of this study is to understand the perceptions and attitudes you, high school seniors have toward technology and studying computing how those perceptions and attitudes were formed.

Description of study procedures

There are two levels of participation. The first level of participation is filling out this survey. Filling out this survey constitutes your consent to this level of participation.

The second level is to participate in a focus group to be held after school. The focus group will last approximately 90 minutes. Immediately following the focus group you will have an opportunity to ask questions of a college professor regarding college and possible technology majors. After all the focus groups have been held, a final questionnaire will be given. After that you will be entered in a drawing to win an iPod Nano.

Your name will only appear on this cover sheet and will be retained by the guidance counselor. All information will be kept private. You will not be identified in any publication or presentation of the study findings. All documents from this study will be kept confidential.

Your decision whether or not to participate is completely up to you. If you decide to participate, you are free to withdraw at any time. You may also choose not to answer questions on the questionnaires. I may also choose to withdraw from this study if it is in your best interest.

Contact persons

If you have any questions related to the research please contact:

Principal Investigator: Scott Weaver Email: sweaver@messiah.edu

Phone: 717-766-2511 x3785

Please check one of the following.

- I am not willing to participate in a focus group.
- I am willing to participate in a focus group. Check all the dates below that you are available. If you want a friend with you, write their name down.

□ Tue, February 24

□ Mon, February 9 □ Thu, February 19

- □ Tue, February 10 □ Mon, February 23
- □ Wed, February 11
- □ Tue, February 17 □ Wed, February 25

□ Wed, February 18

Name:	 Friend:
nume.	

090130S

Technology Survey

1.	The following information will be kept confidential and is only used for statistical purposes.				
	Gender	□ Male	☐ Female	Age	
Inte	erests in	High Schoo	bl		
2.	What are	e your 2 favor	rite classes in High	School?	
3.	What are	e your 2 least	t favorite classes in	High School?	
Use	e of tech	nology			
4.	What tee	chnology do y	ou use regularly? (check all that	apply)
		or other MP3		computer/la	ptop
	🗖 cell p			other:	
5.	What tee	chnology wou	ld you love to use/	own if you cou	ıld?
6.	What is	the main thir	ng you use compute	ers for?	
7.	How many computers does your family have at home?				
8.	What are your favorite websites? Circle the one you think is the coolest.				
9.	What old	sses in tech	nology have you? (c	heals all that a	apply)
9.			Graphics	neek an that a	Multi-Media / Digital Photo.
	_ `	amming	□ Network Cer	tification	□ Hardware
		of the Internet		uncation	U Web Design
				、 、	_
		puter Applica	tions (Word, Excel)	□ Other:
10.	 0. What have you learned about computers that you've picked up on your own? (check al that apply) □ Upgrading my computer hardware (additional memory, graphics cards, etc.) □ Upgrading my computer software (new version of Operating System, Browser) 				
	🗖 Appli	cation progra	m installation	🛛 Websit	te development
	□ Set u	p home netw	ork	🗖 Installe	ed new Operating System
	_	amming		□ None	
	_	r			

090130S

- 11. What would you love to learn about computers?
- 12. What would you like your major to be in college? List your top 2 choices at this point in your life.
- 13. Quickly read each term in the list below and react based on your first impression whether you think the term "Boring", "Neutral", or "Exciting" or don't know what it is.

Term	Boring	Neutral	Exciting	What's This?
iPhone				
Programming				
Game Development				
Virtual Machine				
Networking				
Graphics				
Phishing				
Open Source				
Wiki / Blog				
Linux				
Security				
Bandwidth				
Firewall				
E-commerce				
Flashdrive				
Spyware				
Voice Over IP				
Web Development				
Robotics				
Artificial Intelligence				

090130S

Interview Guide

www.manaraa.com

Understanding Attitudes and Perceptions of the Next Generation toward

Technology

Interview Guide

Version 2.0

Scott Weaver

February 17, 2009

1 Introduction

Enrollment has been dropping in the computing majors and reasons have been proposed based around the fear of not being able to land a job due to the dot-com bust, out-sourcing, and job scarcity [3]. However, according to the Bureau of Labor and Statistics, jobs in computing will increase in the next ten years [2, 1]. So what are the real reasons for the drop in enrollment? What are the perceptions of high school students that keep them from choosing computing as a major?

High school students and their parents are the primary stake holders from which to learn. Understanding their perceptions of computing majors and how studying computing fits into their world view is key to understanding this decline in enrollment. Without their input, the reasons for the drop in computing majors over the last five years [4] will continue to be guesswork.

2 The Purpose

The purpose of this study is to understand the perceptions and attitudes high school students have toward technology and how those perceptions and attitudes were formed.

3 Questions

- Thank you for your willingness to participate in this focus group. My goal is to understand what you think and believe about technology and computing. Because I want to know what YOU think, there are no wrong answers. I will be recording our conversations simply to be able to look for patterns and insights over all the focus groups I'll be conducting. This is all confidential, nothing you say today will be connected with you in my research, so please feel free to be totally honest about your feelings and thoughts during our conversation.
 - 1: **OPENING:** Tell us your name and what your favorite website or computer game is.
 - 2: **INTRODUCTION:** Describe the benefits of using technology and computers.
 - 3: **TRANSITION:** In your view, what is the difference between technology and computing? Which term is more appealing? Is there another term that fits better?
 - 4: **TRANSITION:** When you think about computing, what comes to mind?
- View of computers in general
 - 1: **KEY:** What excites you about computers?
 - 2: **KEY:** What has been your greatest disappointment in using computers?
 - 3: **KEY:** If you could change anything about computers and computing, what would you change?
- Job Opportunities in Computing
 - 1: **KEY:** What kind of jobs do you think are available to those who major in computing?
 - 2: **KEY:** If you studied computing in college, what do you think your job opportunities will be when you graduate?
 - 3: **KEY:** If you got a job using technology of some sort, what would your dream job look like?
 - 4: **KEY:** What do you think you need to study to get a "computing" job?
- Initial thoughts of Majoring in Computing
 - 1: **KEY:** Have you thought about what you'd like to major in when you go to college?
 - 2: **KEY:** What aspects of that major interest or intrigue you?
 - 3: **KEY:** Have you looked at any college websites to learn about their majors? What were your impressions of the website?
 - 4: **KEY:** Have you looked at any computing majors online? What were your impressions about the majors?
- Majoring in Computing

- 1: **KEY:** When you think about majoring in computing what comes to mind?
- 2: **KEY:** What do you hear people say about majoring in computing?
- 3: **KEY:** Who would you say is the person who has influenced you the most?
- 4: **KEY:** What are your thoughts about going to college and majoring in computing?
- 5: KEY: If you could make your own computing major, what would it look like?
- 6: **KEY:** How would you explain the computing major you just created to interest your friends or gain approval from someone in your family?
- Wrap-up regarding computing
 - 1: **KEY:** Tell me up to five positive things about computing, no matter how small the positive thing is.
 - 2: **KEY:** Tell me up to five negative things about computing, no matter how small the positive thing is.
- Ending
 - 1: **ENDING:** Of all the things we've discussed, what is the most important disconnect you see between your perceptions of technology and computing and the idea of majoring in computing in college?
- Note to Self: Summarize the discussion in under 3 minutes...
 - 1: **Summary:** Is this an adequate summary?
 - 2: Summary: Did I correctly describe what was said?
 - 3: Summary: How well does that capture what was said here?
 - 4: **FINAL:** Have we missed anything?
 - 5: **FINAL:** Is there anything that we should have talked about but didn't?

References

- [1] Arlene Dohm and Lynn Shniper. Occupational employment projections to 2016. http: //www.bls.gov/opub/mlr/2007/11/art5full.pdf, November 2007.
- [2] Eric B. Figueroa and Rose A. Woods. Industry output and employment projections to 2016. http://www.bls.gov/opub/mlr/2007/11/art4full.pdf, November 2007.
- [3] John Sargent. An overview of past and projected employment changes in the professional it occupations. http://www.cra.org/CRN/issues/0403.pdf, May 2004.
- [4] Stuart Zweben. 2006-2007 taulbee survey. http://www.cra.org/CRN/articles/may08/ taulbee.html, May 2008.

www.manaraa.com

Appendix F

Recruitment Script

Good morning. It's great to see you this morning. How many of you enjoy using technology, raise your hand. You may have a cell phone, maybe an iPhone or an iPod. You may enjoy playing your Wii or looking at the new gadgets in some of the new cars. Great.

Now, how many of you enjoy computers? You enjoy using them, you may even have installed software or upgraded the hardware.

That's great, I have a good group here today. I need your help. My name is Scott Weaver and I teach at Messiah College. I'm doing research on what you think about technology. What do you like and dislike. What do you think about computers or about studying computers.

The first way you can help is by filling out the survey that was handed to you on your way in. If you didn't get one, raise your hand and we'll be sure to get you one.

The second way is to give me your opinions in a group of 6-10 other students. These focus groups will be held after school, so I'll supply the pizza and soda if you participate. You only need to participate in one group. Because this is important to me and is taking some of your time, I will also enter your name into a drawing for an iPod Nano. It's that important to me to hear what you have to say.

These focus group will last approximately 90 minutes, after which I will stick

around and answer any questions you may have about college or computer and technology related fields.

There is a place on the front of your survey to indicate that you are willing to participate in one of these focus groups. If you do, please check all the dates you could participate. If you want to make sure you are in the group with a friend, write your friends name down, but still indicate all the dates you are available. I can only do one group a day.

Take the next few minutes to complete your survey and we'll be around to collect them. Thank you so much.

Appendix G

Sample Delphi Session

www.manaraa.com

G.1 Delphi Study Introduction Screen

The welcome screen thanked the students for participating in the study. It

presented the problem and how the results of the study would be used. It then provided instructions on how to proceed. At the bottom of the welcome screen was displayed the dates of the three Iterations.

Messiah Student Brainstorm	Please Lo	ogin	
Thank You!	Password	1:	
Thank you for your participation in this study!		Reset	gin
The Problem:		Forgot Your Pas	sword?
It is my belief that computer curricula presented on college web sites and catalogs present computing as it has been presented for over twenty years. It does not reflect what it really is and the possibilities open to those studying it. Your insights will be most helpful in the search for a better way of presenting a computing curriculum. A way of presenting the curriculum that will motivate and encourage students to pursue studying computers.		Need a login and pa	ssword?
Results of this study:			
The results of this study may be used to effect change here at Messiah, to help clar students. The main purpose is to develop an alternative curriculum that will be use students across the country to elicit their responses in the changes made.			
Your Task, Should You Choose To Accept			
You are currently in a computing major, whether CS or BIS, so you have ideas and you know that is of interest! If you were looking into a computing program today, win pursuing the program further? It is all about YOUR opinions in this matter. Study Introduction	-		
This study is comprised of three separate questionnaires. Results from each questi- questionnaires. Below are the dates for the three questionnaires.	onnaire a	re used to deve	elop subseque
	Iteration	Open Date	Close Date
	1	Jan 11 (8 am)	Jan 14 (11:50 pr
	2	Jan 16 (8 am)	Jan 18 (11:50 pr
	3	Jan 22 (8 am)	Feb 14 (11:50 p

G.2 Delphi Study Iteration One

The first screen of Iteration One asked the students to examine several curricula before brainstorming. The idea behind this was to aid the student in brainstorming ideas.

MESSIAH Curriculum	Brainstorming Study		
	Logout		
	ou an idea of what is currently available, then go on to the brain w) so that you will be able to switch back and forth as you need		
Penn State's Computer Science Curriculum			
Georgia Tech's Computer Curriculum			
Messiah College's Computer Science Curricula	um (pdf)		
Lehigh University's Business Information Syste	ms Curriculum		
Messiah College's Business Information System	ms Curriculum (pdf)		
Fictitious Curriculum			
Look at the web sites above for ideas. Once you are fin portion. You may refer back to the other web sites - or	ished looking at the web sites, proceed to the brain storming if you know of others you'd like to look at.		
Start the Brainstorming			
	e Grantham, PA 17027 🖳 🗸 717-766-2511 🕟 009 Messiah College		

The second screen of Iteration One allowed students to add their brainstorming ideas.

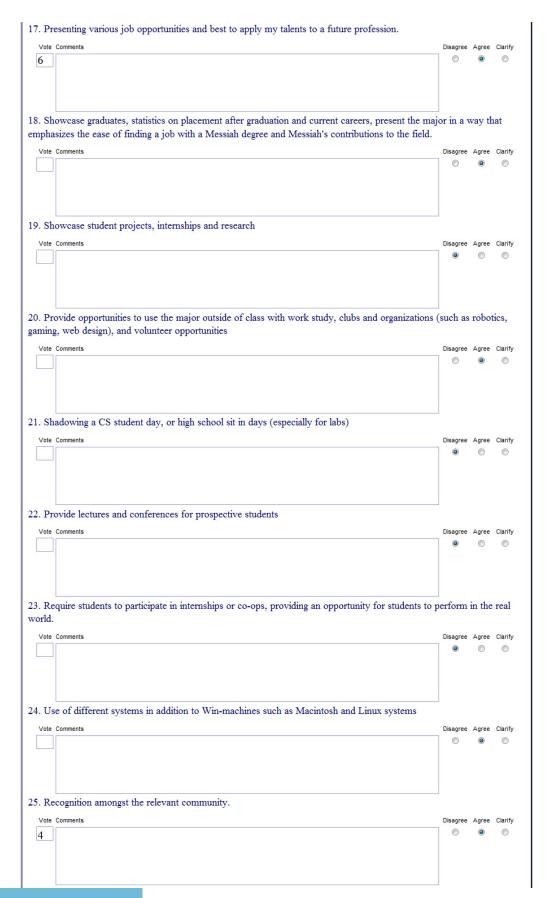
IESSIAH	Curriculum Brainstorming Study
	Logout
Please respond to the	following 2 questions.
-	mputing program today, what things might generate more interest in pursuing the program
Accredited program Software engineering con Logical thinking courses Programming courses	
computing potential. Explain difference betwe Emphasize how you need n	change how the major is presented that will be exciting and motivating to students who have en Computer Science knowledge and "computer nerd" knowledge ot be good with a computer to study computer science c, and problem solving aspects
Update Response	
	Messiah College One College Avenue Grantham, PA 17027 🚟 🛪 717-766-2511 😯 <u>© 2009 Messiah College</u>

G.3 Delphi Study Iteration Two

The first screen of Iteration Two provided instructions on what to do with the

following screen.

MESSIAH Curriculum Brainstorming Study
Logout
In this iteration, read through all the <i>Idea</i> s and comment on them and indicate whether you Disagree, Agree, or need clarification on the <i>Idea</i> . Choose and keep track of the <i>Ideas</i> you consider the top ten.
Then rate the top 10 you chose by giving the top <i>Idea</i> a 10 and the next a 9 and so forth. Use the Vote text box. Do not duplicate ratings.
At the end of the form there is a space to add more <i>Idea</i> s that you may have as you read through the list. Add all the extra <i>Idea</i> s you have in the box provided. If it is an <i>Idea</i> that relates to another <i>Idea</i> , please use the other <i>Idea</i> 's comment box to elaborate instead of adding it as a new <i>Idea</i> .
Start the Brainstorming
Messiah College One College Avenue Grantham, PA 17027 📑 🖣 717-766-2511 🕥 © 2009 Messiah College

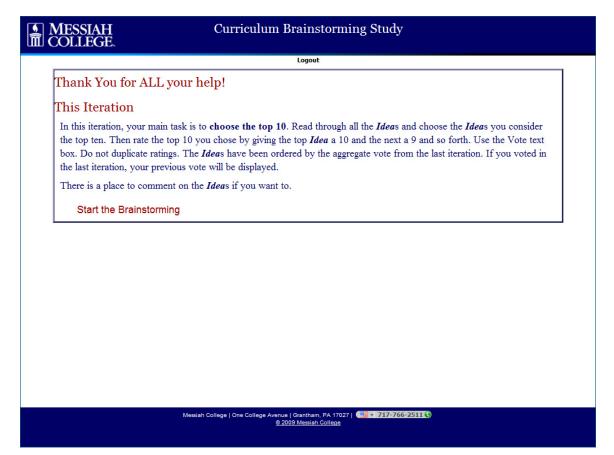


The second screen provided all the brainstorming ideas and allowed the participant to comment on any idea as well as choose the top ten ideas and rate them from most important (10) to least important (1).

1ESSIAH OLLEGE	Curriculum Brainstorming Study
	Logout
Please respond to the fol	llowing 42 ideas.
	nto practice with service learning courses, special semester projects, internships, and
Vote Comments	Disagree Agree Clarify
	0 0 0
marketing approach to present to	on of social networking and online identity and presence. This can be combined with a owards market sectors and demographics with the effects of anonymity.
Vote Comments	Disagree Agree Clarify
3. Computer gaming concentration	on combining computer graphics and programming.
Vote Comments	Disagree Agree Clarify
	• •
4. An Accredited program Vote Comments 10	Disagree Agree Clarify
5. Software engineering concentr	ration
Vote Comments	Disagree Agree Clarify
9	0 0 0
6. Logical thinking courses, how	to think
Vote Comments	Disagree Agree Clarify
5	© ® ©
7. Integration of faith into the pro	ogram.
Vote Comments	Disagree Agree Clarify
	0 0 0

	8. Options in course selection. Vote Comments	Disagree	Agree ()	Clarify
	9. Faculty bios with interests highlighting their accessibility and help Vote Comments	Disagree	Agree	Clarify
	10. An over-arching project for the whole major Vote Comments	Disagree	Agree	Clarify
	11. Developing real-world applications (current research, technology being invented software being de scenarios that are realistic to a work environment. Vote Comments	Disagree		Clarify
	12. Larger variety of programming language courses. Vote Comments	Disagree ©	Agree ()	Clarify
	13. A course of web site languages such as html, css, javascript, and php. Vote Comments	Disagree	Agree	Clarify
	14. A class that combines hardware and software i.e. taking inputs from an outside/analog source, sug movement, wieght etc, converting it to digital and evaluating it. Vote Comments	ch as te Disagree		
	15. Alternatives high-level math: Require Calculus I (whether MATH 111 or 109 AND 110), and the remainder (e.g. two of the following: Statistics for CS, Advanced algebra, or Calculus II) Vote Comments	n give o Disagree		
	 16. Concentrations (i.e. Network Design, Programming, Servers, Computer Forensics, Web Design), in a specified area of interest with topics within the concentration also being displayed. Vote Comments 	provid Disagree	ing exp	perience
••	7	۲		©
فلاستشارات		Ņ	ww۱	w.ma

	Comments	Disagree	Agree	C
3		0	۲	
27. Of	fer the major as a B.S. degree instead of a B.A.			
Vote	Comments	Disagree	Agree	(
8		0	۲	
	ovide a course at the beginning of a student's college career that allows them to experience a v	ery broa	id ide	a
	s concentration areas. Comments	Disagree	Agree	
2			0	
29. Exj	press thoroughly that not all Computer related majors are programming intensive.			
Vote	Comments	Disagree	Agree	
1			۲	
20.11				
	ve a clean, understandable, and modern website with an intuitive layout.	Disagree	Agree	
Vole	Comments	() ()	©	
	ovide more courses dealing with information management and other business aspects of the co		indus	tı
Busine	ss information is more than just computer systems, it requires management and human resour	rces.		
Busine				
Busine	ss information is more than just computer systems, it requires management and human resour	rces.		
Busine Vote	ss information is more than just computer systems, it requires management and human resour ^{Comments} ork with using and designing IS in the real world: ERP (SAP or Oracle), CRM (Siebel), and kr	Disagree	Agree	
Busine Vote	ss information is more than just computer systems, it requires management and human resour comments ork with using and designing IS in the real world: ERP (SAP or Oracle), CRM (Siebel), and kr ement.	rces. Disagree I	Agree ©	
Busine Vote	ss information is more than just computer systems, it requires management and human resour ^{Comments} ork with using and designing IS in the real world: ERP (SAP or Oracle), CRM (Siebel), and kr	Disagree	Agree ©	
Busine Vote	ss information is more than just computer systems, it requires management and human resour comments ork with using and designing IS in the real world: ERP (SAP or Oracle), CRM (Siebel), and kr ement.	nowledge	Agree ©	
Busine Vote 32. Wo manage Vote	ss information is more than just computer systems, it requires management and human resour comments ork with using and designing IS in the real world: ERP (SAP or Oracle), CRM (Siebel), and kr ement.	nowledge	Agree ©	
Busine Vote 32. Wo manage Vote 33. Pro	ss information is more than just computer systems, it requires management and human resour ^{Comments} ork with using and designing IS in the real world: ERP (SAP or Oracle), CRM (Siebel), and kr ement. ^{Comments}	nowledge	Agree Agree Agree	
Busine Vote 32. Wo manage Vote 33. Pro	ss information is more than just computer systems, it requires management and human resour comments ork with using and designing IS in the real world: ERP (SAP or Oracle), CRM (Siebel), and kr ement. Comments comments convide programming competitions	Disagree	Agree O Agree	
Busine Vote 32. Wo manage Vote 33. Pro Vote	ss information is more than just computer systems, it requires management and human resour comments ork with using and designing IS in the real world: ERP (SAP or Oracle), CRM (Siebel), and kr ement. Comments ovide programming competitions Comments	Disagree	Agree Agree Agree O	
Busine Vote 32. Wo manage Vote 33. Pro Vote 34. Mo	ss information is more than just computer systems, it requires management and human resour Comments Comments C	Disagree	Agree e Agree ©	
Busine Vote 32. Wo manage Vote 33. Pro Vote 34. Mo	ss information is more than just computer systems, it requires management and human resour comments ork with using and designing IS in the real world: ERP (SAP or Oracle), CRM (Siebel), and kr ement. Comments ovide programming competitions Comments	Disagree	Agree e Agree ©	
Busine Vote 32. Wo manage Vote 33. Pro Vote 34. Mo	ss information is more than just computer systems, it requires management and human resour Comments Comments C	Disagree Disagree Disagree Disagree Disagree Disagree Disagree Disagree	Agree Agree Agree Agree Cas Agree	
Busine Vote 32. Wo manage Vote 33. Pro Vote 34. Mo	ss information is more than just computer systems, it requires management and human resour Comments Comments C	Disagree Disagree Disagree Disagree Disagree Disagree Disagree Disagree	Agree Agree Agree Agree Cas Agree	


Vote Comments	Disagree	Agree	Clarify
	۲	0	0
36. Provide an overview of the major.			
Vote Comments	Disagree		
	۲	O	
37. Provide a list and description of required classes as well as a list and description of op	tional classes		
Vote Comments			Olavita
Already have this	Disagree	Agree	Clarity
38. Identify what students will be learning?			
Vote Comments	Disagree		
	۲	0	0
39. Indicate the goal of the major.			
Vote Comments	Disagree	©	©
40. Provide the expected length to completion (i.e. in general 4 years, but could be done i	n 3 and a half)		
Vote Comments	Disagree	Agree	Clarify
	۲	0	0
41. Links to "real-world" applications for each area or concentration	Discourse		Olavita
Vote Comments	Disagree	Agree	Clarity
		-	0
Additional Ideas.			
Comments			
Update Response			

G.4 Delphi Study Iteration Three

The first screen of Iteration Three thanked the participants and provided

instructions on what to do with the following screen.

The second screen provided all the brainstorming ideas and allowed the participant to comment on any idea as well as choose the top ten ideas and rate them from most important (10) to least important (1).

AESSIAH OLLEGE	Curriculum Brainstorming Study
	Logout
Please respond to	o the following 42 ideas.
1. Concentrations (i.e.	Network Design, Programming, Servers, Computer Forensics, Web Design), providing experience nterest with topics within the concentration also being displayed.
Previous Comments and Aggrega	ite Vote
Aggregate Vote: 37 6 Agree, 1 Disagree	
1-4-7-8-10	
Vote Comments	
2.4 6.1.2	
 A COURSE OF WED SITE Previous Comments and Aggrega 	e languages such as html, css, javascript, and php.
Aggregate Vote: 30	lia Aole
6 Agree, 2 Disagree	
6-7-8-9	
I am not sure if there	should be a whole course about web site languages.
With forward looking	g practices such as HTML5
Vote Comments	
Vote commenta	
3. Developing real-wor	rld applications (current research, technology being invented software being developed) in scenarios
that are realistic to a w	vork environment.
Previous Comments and Aggrega	ste Vote
Aggregate Vote: 25	
7 Agree, 1 Disagrees	
7-5-8-3-2	
Vote Comments	
4. Larger variety of pr	ogramming language courses.
Previous Comments and Aggrega	ate Vote
Aggregate Vote: 18	
7 Agree, 1 Disagrees	
6-9-3	
Vote Comments	

	5. Opportunities to put learning into practice with service learning courses, special semester projects, internships, and study abroad.
	Previous Comments and Aggregate Vote Aggregate Vote: 17 9 Agree, 0 Disagree
_	10-2-3-2
	Vote Comments
	6. Software engineering concentration
	Previous Comments and Aggregate Vote Aggregate Vote: 15 7 Agree, 1 Disagree 5-9-1
L	Vote Comments
	7. Offer the major as a B.S. degree instead of a B.A.
	Previous Comments and Aggregate Vote Aggregate Vote: 15 7 Agree, 1 Disagrees, 1 Needs Clarification 7-8 Definitely! It should be a science instead of an art
L	Vote Comments
	8. Presenting various job opportunities and best to apply my talents to a future profession.
	Previous Comments and Aggregate Vote Aggregate Vote: 14 6 Agree, 1 Disagrees, 2 Need Clarification 2-6-6 Already done by Career Center, Dr Weaver, and Holly Myers
L	Vote Comments
	9. An over-arching project for the whole major Previous Comments and Aggregate Vote
	Aggregate Vote: 13 4 Agree, 1 Disagrees, 2 Needs clarification 6-7
L	Vote Comments
-	10. Provide opportunities to use the major outside of class with work study, clubs and organizations (such as robotics, gaming, web design), and volunteer opportunities Previous Comments and Aggregate Vote
	Aggregate Vote: 13 9 Agree, 0 Disagree 4-9
	Work study would be great volunteer opportunity especially are great for resumes
	Vote Comments
الم للاستشارات	www.ma

Previous Comments and Aggregate Vote Aggregate Vote: 13
7 Agree, 1 Disagrees 5-8
A class devoted to Linux would be greatly appreciated it's a very popular server architecture.
Vote Comments
12. Provide programming competitions Previous Comments and Aggregate Vote
Aggregate Vote: 12
5 Agree, 3 Disagree
2-10 this would be a lot of fun
Vote Comments
13. An Accredited program
Previous Comments and Aggregate Vote
Aggregate Vote: 10 4 Agree, 3 Need Clarification
10
Vote Comments
movement, wieght etc, converting it to digital and evaluating it. Previous Comments and Aggregate Vote Aggregate Vote: 10 C Average 2 Discusses
Previous Comments and Aggregate Vote
Previous Comments and Aggregate Vote Aggregate Vote: 10 6 Agree, 3 Disagree
Previous Comments and Aggregate Vote Aggregate Vote: 10 6 Agree, 3 Disagree 10
Previous Comments and Aggregate Vote Aggregate Vote: 10 6 Agree, 3 Disagree 10 Vote Comments
Previous Comments and Aggregate Vote Aggregate Vote: 10 6 Agree, 3 Disagree 10
Previous Comments and Aggregate Vote Aggregate Vote: 10 6 Agree, 3 Disagree 10 Vote Comments 15. Provide a course at the beginning of a student's college career that allows them to experience a very broad ide various concentration areas. Previous Comments and Aggregate Vote
Previous Comments and Aggregate Vote Aggregate Vote: 10 6 Agree, 3 Disagree 10 Vote Comments 15. Provide a course at the beginning of a student's college career that allows them to experience a very broad ide various concentration areas. Previous Comments and Aggregate Vote Aggregate Vote: 10
Previous Comments and Aggregate Vote Aggregate Vote: 10 6 Agree, 3 Disagree 10 Vote Comments 15. Provide a course at the beginning of a student's college career that allows them to experience a very broad ide various concentration areas. Previous Comments and Aggregate Vote Aggregate Vote: 10 7 Agree, 1 Disagrees 2-8
Previous Comments and Aggregate Vote Aggregate Vote: 10 6 Agree, 3 Disagree 10 Vote Comments 15. Provide a course at the beginning of a student's college career that allows them to experience a very broad ide various concentration areas. Previous Comments and Aggregate Vote Aggregate Vote: 10 7 Agree, 1 Disagrees
Previous Comments and Aggregate Vote Aggregate Vote: 10 6 Agree, 3 Disagree 10 Vote Comments 15. Provide a course at the beginning of a student's college career that allows them to experience a very broad ide various concentration areas. Previous Comments and Aggregate Vote Aggregate Vote: 10 7 Agree, 1 Disagrees 2-8
Previous Comments and Aggregate Vote Aggregate Vote: 10 6 Agree, 3 Disagree 10 Vote Comments 15. Provide a course at the beginning of a student's college career that allows them to experience a very broad ide various concentration areas. Previous Comments and Aggregate Vote Aggregate Vote: 10 7 Agree, 1 Disagrees 2-8 Already have this?
Previous Comments and Aggregate Vote Aggregate Vote: 10 6 Agree, 3 Disagree 10 Vote Comments 15. Provide a course at the beginning of a student's college career that allows them to experience a very broad ide various concentration areas. Previous Comments and Aggregate Vote Aggregate Vote: 10 7 Agree, 1 Disagrees 2-8 Already have this? Vote Comments
Previous Comments and Aggregate Vote Aggregate Vote: 10 6 Agree, 3 Disagree 10 Vote Comments Is. Provide a course at the beginning of a student's college career that allows them to experience a very broad ide various concentration areas. Previous Comments and Aggregate Vote Aggregate Vote: 10 7 Agree, 1 Disagrees 2-8 Already have this? Vote Comments 16. More options on the classes we get to take under our choice options that are more specific in different areas
Previous Comments and Aggregate Vote Aggregate Vote: 10 6 Agree, 3 Disagree 10 Vote Comments 15. Provide a course at the beginning of a student's college career that allows them to experience a very broad ide various concentration areas. Previous Comments and Aggregate Vote Aggregate Vote: 10 7 Agree, 1 Disagrees 2-8 Already have this? Vote Comments 16. More options on the classes we get to take under our choice options that are more specific in different areas Previous Comments and Aggregate Vote Aggregate Vote: 10
Previous Comments and Aggregate Vote Aggregate Vote: 10 6 Agree, 3 Disagree 10 Vote Comments 15. Provide a course at the beginning of a student's college career that allows them to experience a very broad ide various concentration areas. Previous Comments and Aggregate Vote Aggregate Vote: 10 7 Agree, 1 Disagrees 2-8 Already have this? Vote Comments 16. More options on the classes we get to take under our choice options that are more specific in different areas Previous Comments and Aggregate Vote Aggregate Vote: 10 5 Agree, 4 Need Clarification
Previous Comments and Aggregate Vote: Aggregate Vote: 10 6 Agree, 3 Disagree 10 Vote Comments 15. Provide a course at the beginning of a student's college career that allows them to experience a very broad ide various concentration areas. Previous Comments and Aggregate Vote: Aggregate Vote: 10 7 Agree, 1 Disagrees 2-8 Altready have this? Vote Comments 16. More options on the classes we get to take under our choice options that are more specific in different areas Previous Comments and Aggregate Vote: Aggregate Vote: 10 5 Agree, 4 Need Clarification 10
Previous Comments and Aggregate Vote Aggregate Vote: 10 6 Agree, 3 Disagree 10 Vote Comments 15. Provide a course at the beginning of a student's college career that allows them to experience a very broad ide various concentration areas. Previous Comments and Aggregate Vote Aggregate Vote: 10 7 Agree, 1 Disagrees 2-8 Already have this? Vote Comments 16. More options on the classes we get to take under our choice options that are more specific in different areas Previous Comments and Aggregate Vote Aggregate Vote: 10 5 Agree, 4 Need Clarification
Previous Comments and Aggregate Vote: Aggregate Vote: 10 6 Agree, 3 Disagree 10 Vote Comments 15. Provide a course at the beginning of a student's college career that allows them to experience a very broad ide various concentration areas. Previous Comments and Aggregate Vote: Aggregate Vote: 10 7 Agree, 1 Disagrees 2-8 Altready have this? Vote Comments 16. More options on the classes we get to take under our choice options that are more specific in different areas Previous Comments and Aggregate Vote: Aggregate Vote: 10 5 Agree, 4 Need Clarification 10
Previous Comments and Aggregate Vote Aggregate Vote: 10 6 Agree, 3 Disagree 10 Vote Comments 15. Provide a course at the beginning of a student's college career that allows them to experience a very broad ide various concentration areas. Previous Comments and Aggregate Vote Aggregate Vote: 10 7 Agree, 1 Disagrees 2-8 Already have this? Vote Comments 16. More options on the classes we get to take under our choice options that are more specific in different areas Previous Comments and Aggregate Vote Aggregate Vote: 10 5 Agree, 4 Need Clarification 10 Vote Comments
Previous Comments and Aggregate Vote: Aggregate Vote: 10 6 Agree, 3 Disagree 10 Vote Comments 15. Provide a course at the beginning of a student's college career that allows them to experience a very broad ide various concentration areas. Previous Comments and Aggregate Vote: Aggregate Vote: 10 7 Agree, 1 Disagrees 2-8 Altready have this? Vote Comments 16. More options on the classes we get to take under our choice options that are more specific in different areas Previous Comments and Aggregate Vote: Aggregate Vote: 10 5 Agree, 4 Need Clarification 10

17. Integration of faith into the program.	
Previous Comments and Aggregate Vote Aggregate Vote: 9 6 Agree, 2 Disagree, 1 Needs Clarification 9	
Vote Comments	
18. Alternatives high-level math: Require Calculus I (whether MATH 111 or 109 AND 110), and then give remainder (e.g. two of the following: Statistics for CS, Advanced algebra, or Calculus II)	options for the
Previous Comments and Aggregate Vote Aggregate Vote: 9 5 Agree, 2 Disagree 9	
Linear algebra would be a good course	
19. Computer gaming concentration combining computer graphics and programming.	
Aggregate Vote: 8 6 Agree, 2 Disagree 4-4	
Vote Comments	
20. Shadowing a CS student day, or high school sit in days (especially for labs)	
Aggregate Vote: 6 4 Agree, 3 Disagree 6	
Vote Comments	
21. Logical thinking courses, how to think	
Previous Comments and Aggregate Vote Aggregate Vote: 5 2 Agree, 5 Disagree, 2 Need Clarification 5	
I'm curious what or how you would do this This should be an element of all classes, not a separate class.	
Vote Comments	
22. Options in course selection.	
Previous Comments and Aggregate Vote Aggregate Vote: 5 5 Agree, 3 Need clarification 5	
Vote Comments	
المنارق للاست	www.mar

	23. Provide lectures and conferences for prospective students
	Previous Comments and Aggregate Vote Aggregate Vote: 5
	5 Agree, 2 Disagree
	5
	Vote Comments
	24. Require students to participate in internships or co-ops, providing an opportunity for students to perform in the real
	world.
	- Previous Comments and Aggregate Vote
	Aggregate Vote: 4 5 Agree, 4 Disagree
	1-3
	Maybe provide the possibility, but requiring?
	Requiring them could cause scheduling difficulties, but providing many opportunities to do so would be good
	Vote Comments
	25. Recognition amongst the relevant community.
	Previous Comments and Aggregate Vote
	Aggregate Vote: 4
	3 Agree, 2 Disagree, 3 Need Clarification 4
	·
	Vote Comments
	26. Have a clean, understandable, and modern website with an intuitive layout.
	Previous Comments and Aggregate Vote
	Aggregate Vote: 4
	5 Agree, 1 Disagrees, 2 Need Clarification
	4
	Vote Comments
	27. Explain difference between Computer Science knowledge and "computer nerd" knowledge, emphasizing how you
	need not be good with a computer to study computer science by emphasizing the math, logic, and problem solving aspects
	Previous Comments and Aggregate Vote
	Aggregate Vote: 3 7 Agree, 2 Disagree
	3
	Vote Comments
	28. Provide more courses dealing with information management and other business aspects of the computer industry.
	Business information is more than just computer systems, it requires management and human resources.
	Previous Comments and Aggregate Vote
	Aggregate Vote: 3
	4 Agree, 3 Disagree
	Vote Comments
للاستشارات	
ک للاستشار آت	
	www.mai

29. Express thoroughly that not all Computer related majors are programming intensive.
Previous Comments and Aggregate Vote Aggregate Vote: 1
8 Agree
1
Vote Comments
30. Work with using and designing IS in the real world: ERP (SAP or Oracle), CRM (Siebel), and knowledge management.
Previous Comments and Aggregate Vote
Aggregate Vote: 1
7 Agree, 1 Disagrees
1
Vote Comments
31. Links to "real-world" applications for each area or concentration
Previous Comments and Aggregate Vote
Aggregate Vote: 1 7 Agree, 1 Disagrees
1
Maybe to alumni work, see what Messiah students have done
Vote Comments
32. Exploration and implementation of social networking and online identity and presence. This can be combined with a
marketing approach to present towards market sectors and demographics with the effects of anonymity.
Previous Comments and Aggregate Vote
Aggregate Vote: 0
2 Agree, 3 Disagree, 1 Needs Clarification
Vote Comments
33. Faculty bios with interests highlighting their accessibility and help
Previous Comments and Aggregate Vote Aggregate Vote: 0
6 Agree, 1 Disagrees, 2 Need Clarification
Vote Comments
Vote Comments
Vote Comments
34. Showcase graduates, statistics on placement after graduation and current careers, present the major in a way that
34. Showcase graduates, statistics on placement after graduation and current careers, present the major in a way that
34. Showcase graduates, statistics on placement after graduation and current careers, present the major in a way that emphasizes the ease of finding a job with a Messiah degree and Messiah's contributions to the field. Previous Comments and Aggregate Vote Aggregate Vote: 0
34. Showcase graduates, statistics on placement after graduation and current careers, present the major in a way that emphasizes the ease of finding a job with a Messiah degree and Messiah's contributions to the field. Previous Comments and Aggregate Vote
34. Showcase graduates, statistics on placement after graduation and current careers, present the major in a way that emphasizes the ease of finding a job with a Messiah degree and Messiah's contributions to the field. Previous Comments and Aggregate Vote Aggregate Vote: 0
34. Showcase graduates, statistics on placement after graduation and current careers, present the major in a way that emphasizes the ease of finding a job with a Messiah degree and Messiah's contributions to the field. Previous Comments and Aggregate Vote Aggregate Vote: 0 8 Agree, 1 Disagrees
34. Showcase graduates, statistics on placement after graduation and current careers, present the major in a way that emphasizes the ease of finding a job with a Messiah degree and Messiah's contributions to the field. Previous Comments and Aggregate Vote Aggregate Vote: 0 8 Agree, 1 Disagrees

35. Showcase student projects, internships and research	
Previous Comments and Aggregate Vote	
Aggregate Vote: 0	
6 Agree, 2 Disagree, 1 Needs Clarification	
Vote Comments	
36. Display each course focus (i.e. this course focuses on hardware and this course focuses on softwa	(re)
Previous Comments and Aggregate Vote	lic)
Aggregate Vote: 0	
5 Agree, 1 Disagrees, 1 Needs Clarification	
5 Agree, 1 Disagrees, 1 Accus Clarineatori	
Vote Comments	
37. Provide an overview of the major.	
Previous Comments and Aggregate Vote	
Aggregate Vote: 0	
4 Agree, 1 Disagrees, 3 Need Clarification	
Vote Comments	
38. Provide a list and description of required classes as well as a list and description of optional classes	s.
Previous Comments and Aggregate Vote	
Aggregate Vote: 0	
6 Agree, 2 Disagree, 1 Needs Clarification	
We already have this.	
Vote Comments	
39. Identify what students will be learning?	
Previous Comments and Aggregate Vote	
Aggregate Vote: 0	
3 Agree, 2 Disagree, 3 Need Clarification	
There are a course catalog and syllabi	
Vote Comments	
10 To direct the cost of the mation	
40. Indicate the goal of the major.	
Previous Comments and Aggregate Vote	
Aggregate Vote: 0	
4 Agree, 2 Disagree, 1 Needs clarification	
Vote Comments	

41. Provide the expected length to completion (i.e. in general 4 years, but could be done in 3 and a half)
Previous Comments and Aggregate Vote
Aggregate Vote: 0
4 Agree, 3 Disagree
That is the standard for most all liberal arts colleges, should be common sense
Vote Comments
42. Software Quality Assurance is an important aspect of development in the workplace, yet gets no attention in college. ISO 9000 series, CMMI, SPICE. Process is as important as product.
Aggregate Vote:
Vote Comments
Update Response
Messiah College One College Avenue Grantham, PA 17027 💷 💌 717-766-2511 🔇 @ 2009 Messiah College

Appendix H

Student-Focused Curriculum

www.manaraa.com

Computer Science Major

Over the last decade, rapid advances in technology, specifically digital technology, have led to dramatic changes in society and in the global economy. Computer and technology related fields claim some of the highest projected job growth in the United States! To prepare for this exciting field, students are encouraged to participate in internships; placement aid is provided.

Students are prepared for lifelong learning in this rapidly evolving discipline. Students seeking a Bachelor of Science degree in Computer Science will find a lot of flexibility in tailoring their college education. Because the computing and technology fields are so diverse, this program, accredited by ABET, allows students to focus on a chosen concentration.

Concentrations

Security and Forensic Computing

Technologically competent criminals exploit new technologies to commit crime. Specialists are needed to thwart criminals by developing secure environments as well as examining digital evidence when a crime has occurred. Recent graduates are currently working as:

- Quality Assurance Project Manager at a large Online News Firm
- Systems Administrator for a large Health Insurance Firm

Artificial Intelligence

Artificial intelligence is used in everything from the Spirit robot sent to mars to collect data to GPS units and cell phones. Specialists are needed to develop products that behave intelligently. The student-run robotics club provides opportunities to apply learning. Recent graduates are currently working as:

- System Engineer developing satellite intelligence for a contracting firm near Washington, DC
- Artificial Intelligence Specialist for a nonprofit scientific society based in California.

Networking

Networking and the Internet have increased the abilities of different technologies such as cars, cell phones and computers to communicate directly with each other. Specialists are needed to design, install, configure and maintain networks to allow devices to do so. Recent graduates are currently working as:

- · IT Project Manager for a large networking firm in Kenya, Africa
- Systems and Network Engineer for a financial organization

Game Development

With the ever increasing power of computers and their graphics capabilities, game development has become a global industry. Specialists are needed to focus on all aspects of interactive video game design, developing games like those available for the PS3 and Xbox gaming consoles. The student-run gaming club provides opportunities to test game ideas. Recent graduates are currently working as:

- Flash Game Developer for an online media company
- Project Creative Director for a large gaming company.

Software Engineering

Software Engineers work in all aspects of society designing, implementing and modifying high quality software for many different types of applications. Specialists are needed to provide software solutions to real-world challenges in many settings from airliners to iPhones. Recent graduates are currently working as:

- Solutions Architect for a worldwide contracting firm.
- · Director of Software Engineering for a global firm based in Minnesota

Web and Media Development

The Internet is used more and more as a vehicle for commerce and information. As the saying goes, "Knowledge is Power." Specialists are needed to develop dynamic, interactive web applications for a world dependent on the World Wide Web. The student-run Web Development organization provides web solutions to many non-profit organizations. Recent graduates are currently working as:

- Mobile Application Development Research for a large, global non-profit organization
- Web Designer and Developer for a local web development business

Build-Your Own

Sometimes students are not sure which direction to take. This program allows students to develop a concentration uniquely their own. With the help of their advisor, any student can tailor the Computer Science major to their needs and dreams.

Core Required Courses

The following are the courses that all Computer Science majors engage in regardless of their chosen concentration.

Calculus I

Calculus I takes the processes of finding the slope of a line and the area in a closed region and considers them as infinite processes. Students study of how things change and how to model systems in which there is change.

Discrete Mathematics

Computers deal with discrete objects, those things which can be separated from each other. Students learn the fundamentals of discrete mathematics which can be applied to real-world problems from the placement of cell-phone towers so they won't interfere with each other to the orbits of satellites.

Introduction to Computer Science

Students are introduced to the various aspects of Computer Science through a general survey course of technology "meccas", the history of various aspects of development in Computer Science, ethical practices in the field and emerging technologies.

Programming I

Students become familiar with basic programming structures such as loops, conditional statements, variables and methods through weekly lab assignments in the Java programming language.

Database Concepts

Students explore the fundamental concepts involved in building and maintaining a database using the MySQL and Oracle database management systems, CSS and PHP programming languages. In cooperation with the Intermediate Web Design course, students create a dynamic, database-driven web site.

Database Applications

Students apply what they have learned in Database Concepts to develop a solution to a real-world need expressed by a non-profit organization. Emphasis is placed on communication and cooperation between multiple teams to design, create, implement and maintain a large-scale application.

Information Systems

Students explore how information technology is used to support the decision-making process in businesses.

Senior Capstone

This two-semester course provides a finale to each student's academic career. While preparing for life after college through various professional preparatory activities, students utilize their cumulative knowledge to develop a final project in their chosen concentration. Students are encouraged to seek current needs in the business and non-profit communities for real-world opportunities.

Concentration Required Courses

Security and Forensic Computing

The following courses are required for the Security Concentration. **Networking**

Students learn the basics of networking and the Internet and how to establish communications between servers as well as the various techniques necessary to create lines of communication between other technological devices.

Computer and Network Security

Students examine computer systems to determine vulnerabilities then practice hacking into those systems. Students then learn how to build defenses to prevent those attacks. Students are exposed to exploits of different operating systems with an emphasis on Windows, Linux and Macintosh.

Operating Systems

Students learn the internal structure and manipulation of the Linux, Macintosh, and Windows operating systems with a focus on protection and security.

Computer Forensics

Students learn how to preserve, identify, extract and document digital evidence in various forms. Current opportunities from local law enforcement agencies allow students to experience real-world forensics.

Cryptography

Students learn how two people can exchange a message in such a way that no one else can understand it, or cause problems with it. A real-world example is online banking which uses cryptography to ensure online transactions are conducted privately by the authorized person.

Advanced Network Security

Students develop advanced skills in identifying network security vulnerabilities, conducting risk assessments, preventing, detecting and responding to intrusions and providing for business continuity and disaster recovery. Local businesses provide opportunities for students to use their developing skills to assess security vulnerabilities and risks.

Biometrics

Students study the use of biological identifiers such as finger prints and the eye's iris in security applications. Lab projects reinforce topics learned.

Electives

Artificial Intelligence

The following courses are required for the Artificial Intelligence Concentration.

Image Processing and Computer Vision

Students learn how to use models of digital image formation, image representation, image enhancement and image understanding to enable machines to make decisions based on the acquired image.

Introduction to Artificial Intelligence

Students learn how to develop intelligent devices including machine problem solving, game playing, pattern recognition and perception problems, machine learning, expert systems and robotics. Graduate students involved in Artificial Intelligence in industry present their current challenges and real-world projects.

Pattern Recognition

Students expand their understanding of the structures and problems of digital pattern recognition; helping machines classify data (patterns) based on the machine's prior knowledge or on statistical information extracted from the data (pattern).

Natural Language Processing

Students examine how computers process and understand natural language with an emphasis on English.

Expert Systems

Students learn the fundamentals of intelligent data processing through an in depth understanding of various concepts and popular techniques used in the field of data mining.

Knowledge-Based Software Engineering

Students expand their understanding of expert systems and natural language processing, developing applications to process and understand large amounts of data and provide solutions to human questions. Companies utilizing current methods discussed in class describe their use and development of knowledge-based applications in real-world settings.

Electives

Students may choose 3 other courses from any concentration to round out their degree.

Networking

The following courses are required for the Networking Concentration.

Networking

Students learn the basics of networking and the Internet and how to establish communications between servers as well as the various techniques necessary to create lines of communication between other technological devices.

Wireless Networks and Mobile Computing

Students extend their understanding of networking to wireless and mobile devices including smart phones and pda's learning how to provide access to information anywhere, anyplace, and anytime.

Distributed Systems

Students explore the issues surrounding applications that are distributed in different locations that do not share the same address space but are working together to solve a problem.

Computer and Network Security

Students examine computer systems to determine vulnerabilities then practice hacking into those systems. Students then learn how to build defenses to prevent those attacks. Students are exposed to exploits of different operating systems with an emphasis on Windows, Linux and Macintosh.

Converged Networks

Students examine current and emerging network technologies that have differing architecture to deliver varying information from voice, data, and video/imaging and how to make them work together. Students tour various local Internet Service Provider facilities to observe current, real-world converged networks in operation.

Advanced Network Security

Students develop advanced skills in identifying network security vulnerabilities, conducting risk assessments, preventing, detecting and responding to intrusions and providing for business continuity and disaster recovery. Local businesses provide opportunities for students to use their developing skills to assess security vulnerabilities and risks.

Electives

Game Development

The following courses are required for the Game Development Concentration.

Programming II

Students expand their understanding of programming, focusing on object-oriented structures and methods necessary for software and game development; structures and methods they will use in other graphics and gaming courses.

3D Modeling and Animation

Students explore a multitude of techniques in 3D graphics and animation as they master the many tools of 3D Studio Max. Students develop 3D graphics and animations for gaming environments much like those in games for the Xbox and PS3.

Graphics

Students learn and use a high performance cross-platform real time 3D graphics library used in both game and simulation industries. Students are exposed to the same techniques as Pixar employees in developing animation in movies such as Toy Story and UP. The will also use some of the same tools as developers for the Xbox and PS3.

Structure of Game Design

Students are introduced to the important techniques used by game programmers and designers from developing a framework for the game to the story line that keeps gamers interested. Students apply tools of the trade to creating a game of their design. Students deconstruct their favorite video game into its developmental stages.

Data Structures

Students apply the tools necessary to manage data and organize programs in a variety of applications, examining the effectiveness of each tool.

Introduction to Artificial Intelligence

Students learn how to develop intelligent devices including machine problem solving, game playing, pattern recognition and perception problems, machine learning, expert systems and robotics. Graduate students involved in Artificial Intelligence in industry present their current challenges and real-world projects.

Electives

Students may choose 3 other courses from any concentration to round out their degree.

Software Engineering

The following courses are required for the Software Engineering Concentration.

Programming II

Students expand their understanding of programming, focusing on object-oriented structures and methods necessary for software and game development; structures and methods they will use in other graphics and gaming courses.

Data Structures

Students apply the tools necessary to manage data and organize programs in a variety of applications, examining the effectiveness of each tool.

Principles and Practices of Software Engineering

Students examine the principles and methods of software engineering from development methodology, software requirements and specifications, software design, testing software quality assurance, and project management. Students are also exposed to a number of popular tools used extensively in industry to support software engineering activities.

Object Oriented Modeling

Student are provided with the tools and techniques needed to solve complex, real-world software engineering problems in an object-oriented manner, using the most effective elements of the widely used Unified Process. Students develop an Object-Oriented Model to a current, real-world situation provided by local businesses.

Computer Systems

Students explore machine-level programming and architecture and learn discernment in when and where to use them.

Distributed Systems

Students explore the issues surrounding applications that are distributed in different locations that do not share the same address space but are working together to solve a problem.

Electives

Web and Media Development

The following courses are required for the Web and Media Development Concentration.

Principles of Web Site Design

Students are introduced to the concepts and principles for designing Web sites. They apply design basics to developing a web site using XHTML and Cascading Style Sheets and publish their web site to a web server.

Web Graphics

Students are introduced to the basic techniques of digital photography manipulation with an emphasis on techniques for working with images for Web design. Students apply their understanding to preparing graphic images for the web in a variety of ways.

Basic Typography

Students are introduced to the terminology, technology and design aspects of typography and visual communication, developing an understanding of the foundations of typography and its effective use in graphic design.

Webmasters and Servers

Students explore existing and emerging Web development technologies including specialized Web markup and scripting languages evaluating their effective use in an enterprise Web development environment. Students are exposed to web developers currently using these technologies in solving their real-world challenges.

Intermediate Web Design

Students combine their knowledge of web design, graphics and typography to create complex page layouts and navigation. They develop scripting and database skills using current scripting languages to deliver dynamic web sites. In cooperation with the Database Concepts course, students create a dynamic, database-driven web site.

Digital Imaging and Streaming Video

Students are provided hands on projects learning about digital imaging and streaming video.

E-Commerce

Students explore multi-faceted issues of commerce on the Internet from the customer experience to business expectations with an emphasis on security for both customer and business.

Electives

Appendix I

Survey Instruments

419

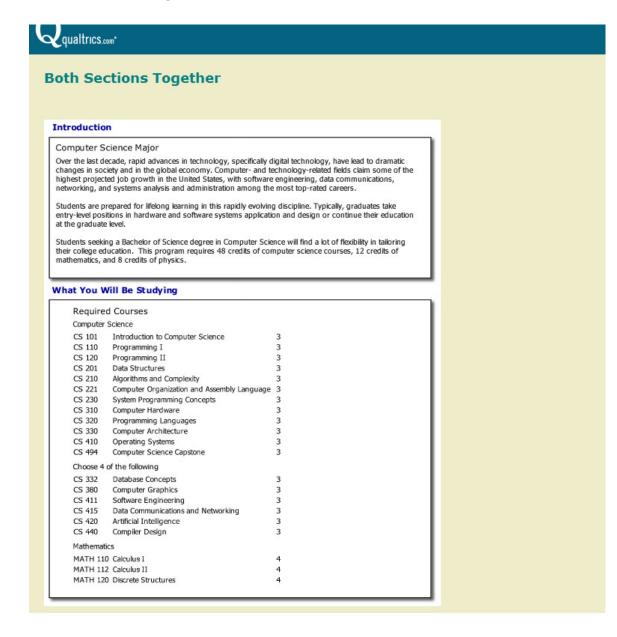
I.1 First Survey Instrument

I.1.1 Introduction Block

Qualtrics				
Dear Student:				
Thank you for taking opinions my shape th		-	-	
This survey will take colleges display their Introduction to the m answer the questions see.	Computer Science ajor followed by W	e major on their we hat You Will Be Stu	ebsites. This surve udying. Look at eac	y begins with an ch section and
Thank you!				
Sincerely, D. Scott Weaver Principal Investigator	r			
Before we start the sur	vey, please rate your	interest in studying	Computer Science.	
It has never crossed my mind	I am not interested	l might consider it	I am a little interested	I am extremely interested
O	\odot	O	O	\odot
	0%		100%	
>>				

Introduction

What You Will Be Studying


- • • • •			
-+ V W			
at You w	/ill Be Studying		
Required	Courses		
Computer S	Science		
CS 101	Introduction to Computer Science	3	
CS 110	Programming I	3	
CS 120	Programming II	3	
CS 201	Data Structures	3	
CS 210	Algorithms and Complexity	3	
CS 221	Computer Organization and Assembly Language	3	
CS 230	System Programming Concepts	3	
CS 310	Computer Hardware	3	
CS 320	Programming Languages	3	
CS 330	Computer Architecture	3	
CS 410	Operating Systems	3	
CS 494	Computer Science Capstone	3	
Choose 4 o	f the following		
CS 332	Database Concepts	3	
CS 380	Computer Graphics	3	
CS 411	Software Engineering	3	
CS 415	Data Communications and Networking	3	
CS 420	Artificial Intelligence	3	
CS 440	Compiler Design	3	
Mathematic	35		
MATH 110	Calculus I	4	
MATH 112	Calculus II	4	
MATH 120	Discrete Structures	4	

After looking at What You Will Be <mark>studying</mark> ?	Studying above, how well do you th	ink you understand <mark>what you will be</mark>	
I don't understand at all	I understand a little bit	It is extremely clear	
0	\odot	\odot	
Which courses look interesting (ch	eck all that apply)?		
Introduction to Computer Science	System Programming Concepts	Database Concepts	
Programming I	Computer Hardware	Computer Graphics	
Programming II	Programming Languages	Software Engineering	
Data Structures	Computer Architecture	🔲 Data Comm. & Networking	
Algorithms and Complexity	Operating Systems	Artificial Intelligence	
Computer Org. & Assembly Lang.	Computer Science Capstone	Compiler Design	
How important is knowing the exa	ct courses and course names you	will be taking?	
It is not important	It is a little bit important	It is extremely important	
O	O	O	
How important is it to you to know	the required course list?		
It is not important	It is a little bit important	It is extremely important	
O	O	O	
	0%		
<< >>			

Both Sections Together

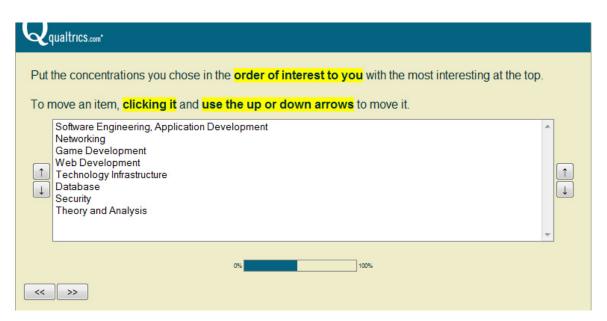
Above are both sections you've been shown before. Put the following items in the order you think is important with the most important at the top. The items are listed as they appear above.
To move an item, clicking it and use the up or down arrows to move it.
Introduction (The first 3 paragraphs) Course Number (The 1st column. Examples: CS 101, CS 110) Course Name (The 2nd column. Example: Introduction to Computer Science) Course Credits (The 3rd column. Example: 3)
What do you like the most about what you've been shown (the Introduction and What You Will Be Studying)?
What do you like <mark>the least</mark> about what you've been shown (the Introduction and What You Will Be Studying)?
What could be added that would help you understand the major better?
0%

Interest Level Revisited

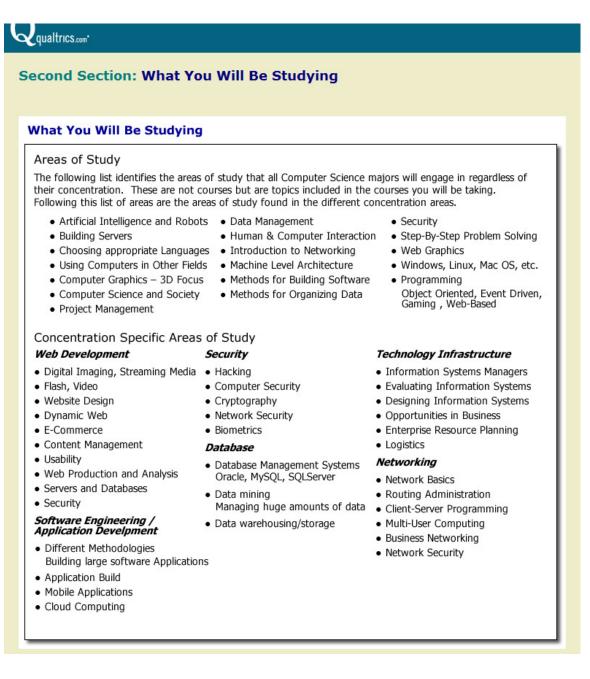
Qualtrics.com•				
After reading the Intro Computer Science.	oduction and What Y	/ou Will Be Studyin	g , revisit your interes	t in studying
It has never crossed my mind	I am not interested	I might consider it	I am a little interested	I am extremely interested
\odot	\bigcirc	\bigcirc	\odot	0
If your opinion has cha	anged, what changed		y of courses	
🔲 Knowing the exact requ	irements	Other		
The names of the cours	ses	🔲 My opinior	n hasn't changed	
	0%		100%	
<< >>>				

I.1.3 Job-Focused Curriculum

Introduction

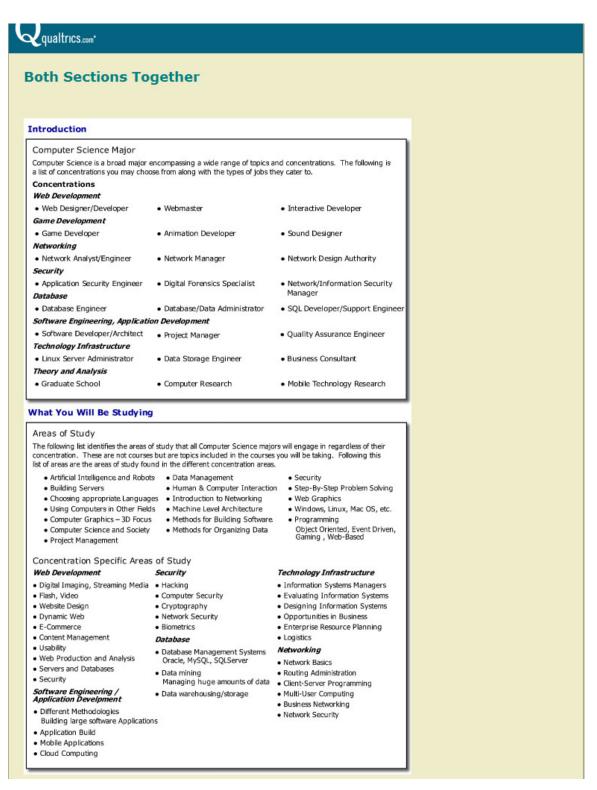

rst Section: Introducti	on	
ntroduction		
Computer Science Major		
	encompassing a wide range of topics choose from along with the types of	
Concentrations		
Web Development		
 Web Designer/Developer 	 Webmaster 	 Interactive Developer
Game Development		
Game Developer	 Animation Developer 	 Sound Designer
Networking		
 Network Analyst/Engineer 	 Network Manager 	 Network Design Authority
Security		
Application Security Engineer	Digital Forensics Specialist	 Network/Information Security
Database		Manager
Database Engineer	Database/Data Administrator	SQL Developer/Support Engineer
Software Engineering, Applicati	on Development	
Software Developer/Architect	 Project Manager 	• Quality Assurance Engineer
Technology Infrastructure		
Linux Server Administrator	Data Storage Engineer	 Business Consultant
Theory and Analysis		

After looking at the Introduction a	bove, how well do you think you unde	erstand what this major is about?
I don't understand it at all	I understand it a little bit	It is extremely clear
O	O	O
After looking at the Introduction a for after graduation?	bove, how well do you think you unde	erstand <mark>what jobs you could apply</mark>
I have no idea	I have a general idea	I know exactly what jobs I could get
\odot	O	O
Which concentrations look interesti	ng to you (check all that apply or Nor	ne of the Above)?
🔄 Database	📃 Game Development	C Security
Networking	Software Engineering, Application Development	Web Development
Theory and Analysis	Technology Infrastructure	None of the Above
>>	0%	



Ordering of Concentrations

What You Will Be Studying



www.manaraa.com

After looking at What You Will Be So studying?	tudying above, how well do you thir	ık you understand <mark>what you will be</mark>
I don't understand at all	I understand a little bit	It is extremely clear
O	O	O
How important is knowing the exact	courses and course names you v	vill be taking?
It is not important	It is a little bit important	It is extremely important
O	O	\odot
How important is it to you to know the	e required course list?	
Not important at all	A little bit important	Extremely important
O	O	\odot
	0%	
<< >>>		

Both Sections Together

Above are both sections you've been shown before. Put the following items in the order you think is important with the most important at the top. The items are listed as they appear above.
To move an item, clicking it and use the up or down arrows to move it.
The Introduction (The first paragraph) Concentration Areas (Listed in both areas - i.e. Web Development, Game Development) The Job Possibilities (In the 1st rectangle under each Concentration Area - i.e. Web Designer) The Introduction to the Areas of Study The General Areas of Study (In the 3-column list in the 2nd rectangle) Concentration Areas of Study (In the 2nd rectangle under each Concentration) The number of Concentrations
What do you like <mark>the most</mark> about what you've been shown (the Introduction and What You Will Be Studying)?
What do you like <mark>the least</mark> about what you've been shown (the Introduction and What You Will Be Studying)?
What could be added that would help you understand the major better?
0%
<< >>

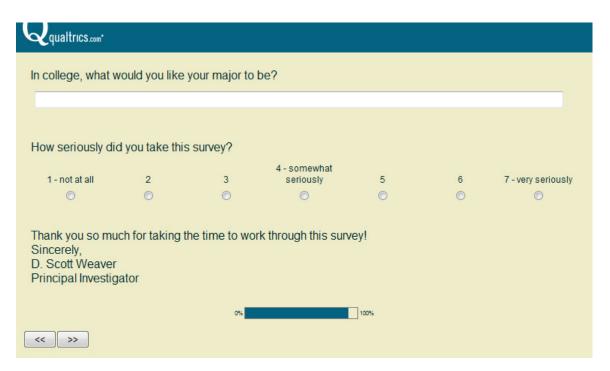
Interest Level Revisited

Qualtrics.com.				
After reading the Intro Computer Science.	duction and What Y	′ou Will Be Studyin	g , revisit your interes	t in studying
It has never crossed my mind ©	I am not interested	I might consider it	I am a little interested	I am extremely interested
If your opinion has cha	nged, what changed	it?		
The Introduction		🔲 The Areas	of Study	
The Concentrations		Other		
The Number of Possible	Concentrations	My Opinio	n Hasn't Changed	
🔲 The Job Possibilities				
<< >>	0%		100%	

I.1.4 Technology Block

Introduction

Qualtrics.com.		
What classes in technology have yo	ou taken? (check all that apply)	
Graphics	Computer Applications (Word, Excel)	Hardware
Programming	Digital Photography	🔲 Web Design
Network Certification	🔲 Video or Audio Editing	🔲 Databases
What math classes have you taken	?	
🔲 Algebra	Calculus	Ceometry
Trigonometry	Statistics	
What software tools do you use	? (check all that apply)	
Word Processing	🔲 Database	🔲 Geometer
Spreadsheets	Presentation (i.e. Power Point)	Minitab
What service-oriented applications	do you use? (check all that apply)	
🔲 Email	Social Networking (i.e. Facebook)	Music Downloads (i.e. iTunes)
Internet Browsing	Search Engines (i.e. Google)	🗖 On-line Radio
🔲 Instant Messaging	Movies On-line	On-line Photo Management (i.e. Flickr)
	0%	
<< >>>	100/8	


I.1.5 Demographics Block

Introduction

Qualtrics.com.		
You are almost finishe demographic informa	ed. The following quest tion only.	ions will be used for
What is your gender?		
🔘 Male		
🔘 Female		
What is your age?		
•		
Where do you live?		
City		
State		
Zip		
Are you planning on going to col	lleae?	
Yes		No
\odot		0
	0%	i
<< >>>		

I.1.6 Conclusion

I.1.7 Completion

CS.com*	
We thank you for your time spent taking this survey. Your response has been recorded.	
0%	

I.2 Second Survey Instrument

I.2.1 Introduction Block

Qualtrics.com
Dear Student:
Thank you for taking the time to work through this survey and for your honest opinions! Your opinions may shape the way colleges present and/or organize their Computer Science major.
This survey will take approximately 15 minutes. We want to know your opinions about how colleges display their Computer Science major on their websites. Please take your time to give me your <u>honest opinion</u> about what you see.
This is an anonymous survey. Your specific responses to questions are not traceable to you, nor will they be published except grouped together with all the other responses.
Thank you!
Sincerely, D. Scott Weaver Principal Investigator
0%
»>

Introduction and Interest Level

Qualtrics.com*				
curriculum that you	ı may find on t Computer Scie	shown a traditional C he web sites of many once major is presente	colleges and uni	iversities. The
The required course	es for the majo	r will be presented on	the page after t	he introduction.
with instructions at that you are honest	the top of each ! Please tell mo	troduction and 1 p of the pages. Remen e what you think, not rate your interest	mber, it is impor what you think	rtant to this survey I want to know.
It has never	I am not		I am a little	I am extremely
crossed my mind	interested	I might consider it	interested	interested
0	0%	Ŭ	00%	0
>>	0%	10	סיטנ	

Curriculum Introduction

qualtrics.com

Instructions

The following three paragraphs make up the introduction to the Computer Science major. Read the introduction and answer the questions that follow.

Computer Science Major

Over the last decade, rapid advances in technology, specifically digital technology, have led to dramatic changes in society and in the global economy. Computer- and technology-related fields claim some of the highest projected job growth in the United States, with software engineering, data communications, networking, and systems analysis and administration among the most top-rated careers.

Students are prepared for lifelong learning in this rapidly evolving discipline. Typically, graduates take entry-level positions in hardware and software systems application and design or continue their education at the graduate level.

Students seeking a Bachelor of Science degree in Computer Science will find a lot of flexibility in tailoring their college education. This program requires 48 credits of computer science courses, 12 credits of mathematics, and 8 credits of physics.

Questions

After looking at the **Introduction** to the Computer Science Major above, indicate how much you **agree** or **disagree** with each statement.

The introduction clearly describes the Computer Science major. The introduction gives me a clear picture of the breadth of Computer Science. The introduction makes the Computer Science Major	0	0	٢	0	O
me a clear picture of the breadth of Computer Science. The introduction makes the Computer	O	0			
makes the Computer			O	0	0
interesting to me.	0	0	0	0	0
The introduction motivates me to nvestigate more into Computer science.	O	0	0	0	0
The introduction makes me confident about my future options after college.	0	0	0	0	0
 From the introduction t 	text, "rapid a text, "drama text, "highes text, "prepar text, " entry- text, " Bache	ndvances in tec tic changes in t projected job ed for lifelong level positions lor of Science o	society" growth" learning" in hardware and degree"		"
 From the introduction t The breakdown of requ credits") 		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
None of the Above					
	0%		100%		

Required Courses

qualtrics.com.

Instructions

Below are the required courses for the major. Look them over before answering the following questions.

Required Courses

Computer Scier	nce	
CS 101	Introduction to Computer Science	3
CS 110	Programming I	3
CS 120	Programming II	3
CS 201	Data Structures	3
CS 210	Algorithms and Complexity	3
CS 221	Computer Organization and Assembly Language	3 3 3 3 3 3 3 3 3 3 3 3 3
CS 230	System Programming Concepts	3
CS 310	Computer Hardware	3
CS 320	Programming Languages	3
CS 330	Computer Architecture	3
CS 410	Operating Systems	3
CS 494	Computer Science Capstone	3
Choose 4 of the	following	
CS 332	Database Concepts	3
CS 380	Computer Graphics	3
CS 411	Software Engineering	
CS 415	Data Communications and Networking	3 3 3 3
CS 420	Artificial Intelligence	3
CS 440	Compiler Design	3
Mathematics		
MATH 110	Calculus I	4
MATH 112	Calculus II	4
MATH 120	Discrete Structures	4

Questions

After looking at the **required courses** above, indicate how much you **agree** or **disagree** with each statement.

0	0	0		
			0	\odot
0	0	O	0	O
0	0	©	0	0
O	0	0	0	O
0	0	0	0	O
	0			

- The Variety of Computer Courses
- The Mathematics Courses
- The sequencing of courses
- \square The number of courses required
- $\hfill\square$ Seeing the whole sequence at once
- Other

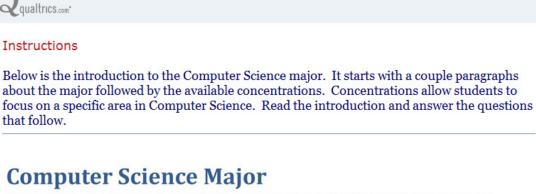
None of the Above

<< >>

0% 100%

Interest Level Revisited

Qualtrics.com.						
After reviewing the curriculum that was presented, revisit your interest in studying Computer Science.						
It has never crossed my mind ©	I am not interested ©	I might consider it ©	I am a little interested ©	I am extremely interested ⊚		
If your interest leve	el has increased	, what motivated the	increase? Chec	k all that apply.		
The Introductory	paragraphs	Other				
🔲 The Required Cou	irses	🗆 My Inter	est Level Hasn't	Changed		
The Mathematics						
If your interest level has remained the same or decreased, please try to articulate why. Remember, we want your honest opinion.						
	0%	10	00%			
<< >>						



Introduction and Interest Level

Qualtrics.com.								
On the following pages you will be shown a Computer Science curriculum. The introduction to the Computer Science major is presented on the first page. The introduction starts with a description of Computer Science followed by an overview of the available concentrations. Concentrations allow students to focus on a specific area in Computer Science.								
the introduction. At	The required courses for the major and concentrations will be presented on the page after the introduction. At the top of the page is the list of Required Courses for all concentrations. The concentrations and the required courses for each follow.							
with instructions at	There is only 1 page for the introduction and 1 page for the required courses with instructions at the top of each of the pages. Remember, it is important to this survey that you are honest! Please tell me what you think, not what you think I want to know.							
Before we start the s Science.	survey, please	rate your interest i	n studying Co	omputer				
It has never crossed my mind	I am not interested	I might consider it	I am a little interested	I am extremely interested				
Ø	© 0%		0%	[©]				
>>	0%	10						

Curriculum Introduction

Over the last decade, rapid advances in technology, specifically digital technology, have led to dramatic changes in society and in the global economy. Computer and technology related fields claim some of the highest projected job growth in the United States! To prepare for this exciting field, students are encouraged to participate in internships; placement aid is provided.

Students are prepared for lifelong learning in this rapidly evolving discipline. Students seeking a Bachelor of Science degree in Computer Science will find a lot of flexibility in tailoring their college education. Because the computing and technology fields are so diverse, this program, accredited by ABET, allows students to focus on a chosen concentration.

Concentrations

Security and Forensic Computing

Technologically competent criminals exploit new technologies to commit crime. Specialists are needed to thwart criminals by developing secure environments as well as examining digital evidence when a crime has occurred. Recent graduates are currently working as:

- · Quality Assurance Project Manager at a large Online News Firm
- · Systems Administrator for a large Health Insurance Firm

Artificial Intelligence

Artificial intelligence is used in everything from the Spirit robot sent to mars to collect data to GPS units and cell phones. Specialists are needed to develop products that behave intelligently. The student-run robotics club provides opportunities to apply learning. Recent graduates are currently working as:

- · System Engineer developing satellite intelligence for a contracting firm near Washington, DC
- Artificial Intelligence Specialist for a nonprofit scientific society based in California.

Networking

Networking and the Internet have increased the abilities of different technologies such as cars, cell phones and computers to communicate directly with each other. Specialists are needed to design, install, configure and maintain networks to allow devices to do so. Recent graduates are currently working as:

- · IT Project Manager for a large networking firm in Kenya, Africa
- · Systems and Network Engineer for a financial organization

Game Development

With the ever increasing power of computers and their graphics capabilities, game development has become a global industry. Specialists are needed to focus on all aspects of interactive video game design, developing games like those available for the PS3 and Xbox gaming consoles. The student-run gaming club provides opportunities to test game ideas. Recent graduates are currently working as:

- Flash Game Developer for an online media company
- · Project Creative Director for a large gaming company.

Software Engineering

Software Engineers work in all aspects of society designing, implementing and modifying high quality software for many different types of applications. Specialists are needed to provide software solutions to real-world challenges in many settings from airliners to iPhones. Recent graduates are currently working as:

- Solutions Architect for a worldwide contracting firm.
- · Director of Software Engineering for a global firm based in Minnesota

Web and Media Development

The Internet is used more and more as a vehicle for commerce and information. As the saying goes, "Knowledge is Power." Specialists are needed to develop dynamic, interactive web applications for a world dependent on the World Wide Web. The student-run Web Development organization provides web solutions to many non-profit organizations. Recent graduates are currently working as:

- · Mobile Application Development Research for a large, global non-profit organization
- Web Designer and Developer for a local web development business

Build-Your Own

Sometimes students are not sure which direction to take. This program allows students to develop a concentration uniquely their own. With the help of their advisor, any student can tailor the Computer Science major to their needs and dreams.

Questions

After looking at the **Introduction** and the **Concentration Descriptions** to the Computer Science Major above, indicate how much you **agree** or **disagree** with each statement.

	Strongly Disagree	Disagree	Neither Agree nor Disagree	Agree	Strongly Agree
The introduction clearly describes the Computer Science major.	O	©	0	0	O
The introduction gives me a clear picture of the breadth of Computer Science.	©	©	0	0	O
The introduction makes the Computer Science Major interesting to me.	O	©	0	0	O
The introduction motivates me to investigate more into Computer science.	©	©	0	0	0
The introduction makes me confident about my future options after college.	©	©	0	0	O
Which of the following i Science Major further?			notivates you to	look into th	e Computer

From the introduction text, "...highest projected job growth ..."

From the introduction text, "...prepared for lifelong learning ..."

From the introduction text, "... Bachelor of Science degree ..."

- The variety of Concentrations
- A Specific Concentration
- Concentration Descriptions
- Positions of Recent Graduates
- Build Your Own Concentration
- None of the Above

<< >>

0% 100%

Core Requirements and Concentration Details

qualtrics.com* Instructions Below are the required courses. The Core Required Courses are presented first followed by the required courses for each concentration. Study each before answering the following questions. **Core Required Courses** The following are the courses that all Computer Science majors engage in regardless of their chosen concentration. Calculus I Calculus I takes the processes of finding the slope of a line and the area in a closed region and considers them as infinite processes. Students study of how things change and how to model systems in which there is change. **Discrete Mathematics** Computers deal with discrete objects, those things which can be separated from each other. Students learn the fundamentals of discrete mathematics which can be applied to real-world problems from the placement of cellphone towers so they won't interfere with each other to the orbits of satellites. **Introduction to Computer Science** Students are introduced to the various aspects of Computer Science through a general survey course of technology "meccas", the history of various aspects of development in Computer Science, ethical practices in the field and emerging technologies. **Programming I** Students become familiar with basic programming structures such as loops, conditional statements, variables and methods through weekly lab assignments in the Java programming language. **Database Concepts** Students explore the fundamental concepts involved in building and maintaining a database using the MySQL and Oracle database management systems, CSS and PHP programming languages. In cooperation with the Intermediate Web Design course, students create a dynamic, database-driven web site. **Database Applications** Students apply what they have learned in Database Concepts to develop a solution to a real-world need expressed by a non-profit organization. Emphasis is placed on communication and cooperation between multiple teams to design, create, implement and maintain a large-scale application. **Information Systems** Students explore how information technology is used to support the decision-making process in businesses. Senior Capstone This two-semester course provides a finale to each student's academic career. While preparing for life after college through various professional preparatory activities, students utilize their cumulative knowledge to develop a final project in their chosen concentration. Students are encouraged to seek current needs in the business and non-profit communities for real-world opportunities.

Concentration Required Courses

Security and Forensic Computing

The following courses are required for the Security Concentration.

Networking

Students learn the basics of networking and the Internet and how to establish communications between servers as well as the various techniques necessary to create lines of communication between other technological devices.

Computer and Network Security

Students examine computer systems to determine vulnerabilities then practice hacking into those systems. Students then learn how to build defenses to prevent those attacks. Students are exposed to exploits of different operating systems with an emphasis on Windows, Linux and Macintosh.

Operating Systems

Students learn the internal structure and manipulation of the Linux, Macintosh, and Windows operating systems with a focus on protection and security.

Computer Forensics

Students learn how to preserve, identify, extract and document digital evidence in various forms. Current opportunities from local law enforcement agencies allow students to experience real-world forensics.

Cryptography

Students learn how two people can exchange a message in such a way that no one else can understand it, or cause problems with it. A real-world example is online banking which uses cryptography to ensure online transactions are conducted privately by the authorized person.

Advanced Network Security

Students develop advanced skills in identifying network security vulnerabilities, conducting risk assessments, preventing, detecting and responding to intrusions and providing for business continuity and disaster recovery. Local businesses provide opportunities for students to use their developing skills to assess security vulnerabilities and risks.

Biometrics

Students study the use of biological identifiers such as finger prints and the eye's iris in security applications. Lab projects reinforce topics learned.

Electives

Artificial Intelligence

The following courses are required for the Artificial Intelligence Concentration.

Image Processing and Computer Vision

Students learn how to use models of digital image formation, image representation, image enhancement and image understanding to enable machines to make decisions based on the acquired image.

Introduction to Artificial Intelligence

Students learn how to develop intelligent devices including machine problem solving, game playing, pattern recognition and perception problems, machine learning, expert systems and robotics. Graduate students involved in Artificial Intelligence in industry present their current challenges and real-world projects.

Pattern Recognition

Students expand their understanding of the structures and problems of digital pattern recognition; helping machines classify data (patterns) based on the machine's prior knowledge or on statistical information extracted from the data (pattern).

Natural Language Processing

Students examine how computers process and understand natural language with an emphasis on English.

Expert Systems

Students learn the fundamentals of intelligent data processing through an in depth understanding of various concepts and popular techniques used in the field of data mining.

Knowledge-Based Software Engineering

Students expand their understanding of expert systems and natural language processing, developing applications to process and understand large amounts of data and provide solutions to human questions. Companies utilizing current methods discussed in class describe their use and development of knowledge-based applications in real-world settings.

Electives

Networking

The following courses are required for the Networking Concentration.

Networking

Students learn the basics of networking and the Internet and how to establish communications between servers as well as the various techniques necessary to create lines of communication between other technological devices.

Wireless Networks and Mobile Computing

Students extend their understanding of networking to wireless and mobile devices including smart phones and pda's learning how to provide access to information anywhere, anyplace, and anytime.

Distributed Systems

Students explore the issues surrounding applications that are distributed in different locations that do not share the same address space but are working together to solve a problem.

Computer and Network Security

Students examine computer systems to determine vulnerabilities then practice hacking into those systems. Students then learn how to build defenses to prevent those attacks. Students are exposed to exploits of different operating systems with an emphasis on Windows, Linux and Macintosh.

Converged Networks

Students examine current and emerging network technologies that have differing architecture to deliver varying information from voice, data, and video/imaging and how to make them work together. Students tour various local Internet Service Provider facilities to observe current, real-world converged networks in operation.

Advanced Network Security

Students develop advanced skills in identifying network security vulnerabilities, conducting risk assessments, preventing, detecting and responding to intrusions and providing for business continuity and disaster recovery. Local businesses provide opportunities for students to use their developing skills to assess security vulnerabilities and risks.

Electives

Game Development

The following courses are required for the Game Development Concentration.

Programming II

Students expand their understanding of programming, focusing on object-oriented structures and methods necessary for software and game development; structures and methods they will use in other graphics and gaming courses.

3D Modeling and Animation

Students explore a multitude of techniques in 3D graphics and animation as they master the many tools of 3D Studio Max. Students develop 3D graphics and animations for gaming environments much like those in games for the Xbox and PS3.

Graphics

Students learn and use a high performance cross-platform real time 3D graphics library used in both game and simulation industries. Students are exposed to the same techniques as Pixar employees in developing animation in movies such as Toy Story and UP. The will also use some of the same tools as developers for the Xbox and PS3.

Structure of Game Design

Students are introduced to the important techniques used by game programmers and designers from developing a framework for the game to the story line that keeps gamers interested. Students apply tools of the trade to creating a game of their design. Students deconstruct their favorite video game into its developmental stages.

Data Structures

Students apply the tools necessary to manage data and organize programs in a variety of applications, examining the effectiveness of each tool.

Introduction to Artificial Intelligence

Students learn how to develop intelligent devices including machine problem solving, game playing, pattern recognition and perception problems, machine learning, expert systems and robotics. Graduate students involved in Artificial Intelligence in industry present their current challenges and real-world projects.

Electives

Software Engineering

The following courses are required for the Software Engineering Concentration.

Programming II

Students expand their understanding of programming, focusing on object-oriented structures and methods necessary for software and game development; structures and methods they will use in other graphics and gaming courses.

Data Structures

Students apply the tools necessary to manage data and organize programs in a variety of applications, examining the effectiveness of each tool.

Principles and Practices of Software Engineering

Students examine the principles and methods of software engineering from development methodology, software requirements and specifications, software design, testing software quality assurance, and project management. Students are also exposed to a number of popular tools used extensively in industry to support software engineering activities.

Object Oriented Modeling

Student are provided with the tools and techniques needed to solve complex, real-world software engineering problems in an object-oriented manner, using the most effective elements of the widely used Unified Process. Students develop an Object-Oriented Model to a current, real-world situation provided by local businesses.

Computer Systems

Students explore machine-level programming and architecture and learn discernment in when and where to use them.

Distributed Systems

Students explore the issues surrounding applications that are distributed in different locations that do not share the same address space but are working together to solve a problem.

Electives

Web and Media Development

The following courses are required for the Web and Media Development Concentration.

Principles of Web Site Design

Students are introduced to the concepts and principles for designing Web sites. They apply design basics to developing a web site using XHTML and Cascading Style Sheets and publish their web site to a web server.

Web Graphics

Students are introduced to the basic techniques of digital photography manipulation with an emphasis on techniques for working with images for Web design. Students apply their understanding to preparing graphic images for the web in a variety of ways.

Basic Typography

Students are introduced to the terminology, technology and design aspects of typography and visual communication, developing an understanding of the foundations of typography and its effective use in graphic design.

Webmasters and Servers

Students explore existing and emerging Web development technologies including specialized Web markup and scripting languages evaluating their effective use in an enterprise Web development environment. Students are exposed to web developers currently using these technologies in solving their real-world challenges.

Intermediate Web Design

Students combine their knowledge of web design, graphics and typography to create complex page layouts and navigation. They develop scripting and database skills using current scripting languages to deliver dynamic web sites. In cooperation with the Database Concepts course, students create a dynamic, database-driven web site.

Digital Imaging and Streaming Video

Students are provided hands on projects learning about digital imaging and streaming video.

E-Commerce

Students explore multi-faceted issues of commerce on the Internet from the customer experience to business expectations with an emphasis on security for both customer and business.

Electives

Questions

After looking at the **core requirements** and **concentration details** above, indicate how much you **agree** or **disagree** with each statement.

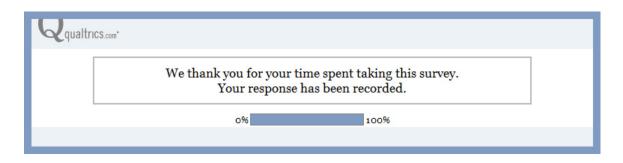
	Strongly Disagree	Disagree	Neither Agree nor Disagree	Agree	Strongly Agree
The variety of courses and concentrations appeals to me.	O	Ô	O	O	0
The core requirements and concentration details give me a good understanding of what a Computer Science major studies.	0	O	O	©	Ô
The core requirements and concentration details motivate me to investigate more into this major.	O	0	0	©	0
The core requirements and concentration details provide flexibility in a student's course of study.	O	Ø	0	©	O
As a result of looking at the core requirements and concentration details, I am more apt to look into studying computer science in my college experience.	O	Ø	©	O	0

\square The Core Courses	
The Course Description	ons
The Number of Conce	entrations
The Variety of Concer	itrations
The flexibility of the particular states of	program
A Specific Concentration	ion
Specific Courses	
Electives for each con	centration
Other	
None of the Above	
	0% 100%

Interest Level Revisited

Qualtrics.com*		
Which concentration(s) motivates you to lo Check all that apply.	ok into the Computer Scien	ce major further?
\square Security and Forensic Computing		
Artificial Intelligence		
Networking		
Game Development		
Software Engineering		
Web and Media Development		
Build Your Own		
After reviewing the curriculum that was pre	sented, revisit your interest	in studying
Computer Science.		
It has never I am not crossed my mind interested I might	I am a little consider it interested	I am extremely interested
© ©		©
If your interest level has increased, what mo	otivated the increase? Check	k all that apply.
The Introductory paragraphs	The Course Offerings	
The Concentrations	The Flexibility	
The Number of Possible Concentrations	Other	
Future Opportunities Presented by Recent Graduates	□ My Interest Level Hasn't	Changed
If your interest level has remained the same Remember, we want your honest opinion.	e or decreased, please try to a	articulate why.
264	100%	
0%	100%	
<< >>		

I.2.4 Demographics and Closure Block


Qualtrics.com*	
You are almost finished. The following questions will not by you. the information will be used combined with all other not set of the set of th	
What is your gender?	
© Male ⊘ Female	
What is your age?	
•	
Where do you live?	
City	
State	
Zip	
Are you planning on going to college?	
Yes	No
0	\odot
0% 100%	
<< >>	

Qualtrics.com.						
In college, what	t would you	ı like your i	major to be?			
Have you looke	d at any co	llege curric	ulum online?			
Yes			⊚ No			
Has looking at t	the college	curriculun	n online influenc	ed you towa	ard a major:	,
Ye	s		No		Haven't l	Looked
C			\odot		0	
What Advanced apply.	l Placemen	t courses h	ave you taken or	r are curren	tly taking? (Check all that
Biology			Physic	s B or C		
Calculus AB o	or BC		🗆 Statist	tics		
Chemistry			Other:	:		
🗏 Computer Sci	ence					
How seriously o	lid you tak	e this surve	ey?			
			4 - somewhat			7 - very
1 - not at all	2	3	seriously	5	6	seriously
0	0	0	0	0	\bigcirc	0
Thank you so n Sincerely, D. Scott Weaver Principal Invest	r	king the tin	ne to work throu	gh this surv	vey!	
		0%		100%		
<< >>		070		100%		

I.2.5 Completion

Appendix J

Institutional Review Board for Human

Investigation

Institutional Review Board for Human Investigation

The Messiah College Institutional Review Board has reviewed the proposal and informed consent with respect to:

- 1. The rights and welfare of the individuals
- 2. The appropriateness of the methods to be used to secure informed consent
- 3. The risks and potential benefits of the investigation

Submitted by: <u>D. Scott Weaver</u>

Entitled: Using Attitudes and Perceptions of the Next Generation to Refocus Computing

The Board considers this project, IRB protocol # 2008-027:					
	FULLY ACCEPTABLE, without reservation; approved through <u>12/01/09</u> . APPROVED CONTINGENT ON REVISIONS (<i>See attached</i>); approved through				
	NOT ACCEPTABLE for reasons noted. (<i>See attached</i> .) A WAIVER OR ALTERATION OF CONSENT PROCEDURE OR DOCUMENTATION IS GRANTED.				
Type of Review	 : □ FULL (approved by IRB Meeting on). ⊠ EXPEDITED (see reasons checked below). 				
This approval requires the use of the IRB-approved informed consent form unless a waiver has been granted. Include the approval date <u>NA</u> and the expiration date <u>NA</u> on the form.					
NOTE: The IRB should be notified of any changes to the research protocol using Form 400 (Request to Amend).					

Reasons for **EXPEDITED** review as listed under Expedited Review Categories in OHRP document 34 CFR 97 and 45 CFR 46.110 (check all that apply; must be completed if EXPEDITED is checked above as Type of Review):

Meets Minimal Risk (required) AND

2 Collection of blood samples by finger stick, heel stick, ear stick, or venipuncture as follows:
 (a) from healthy, non-pregnant adults who weigh at least 110 pounds. For these subjects, the amounts drawn may not exceed 550 ml in an 8 week period and collection may not occur more frequently than 2 times per week; or (b) from other adults and children², considering the age, weight, and health of the subjects, the collection procedure, the amount of blood to be collected, and the frequency with which it will be collected. For these subjects, the amount drawn may not exceed the lesser of 50 ml or 3 ml per kg in an 8 week period and collection may not occur more frequently than 2 times per week.

- #4 Collection of data through noninvasive procedures . . . (e) moderate exercise, muscular strength testing, body composition assessment, and flexibility testing where appropriate given the age, weight, and health of the individual.
- #7 Research on individual or group characteristics or behavior or research employing survey, interview, oral history, focus group, program evaluation, human factors evaluation, or quality assurance methodologies.
- OTHER: #6 Collection of data from voice, video, digital, or image recordings made for research purposes.

SOURCE OF SUPPORT: None Agency:	Departmental	Outside Funding <i>(specify)</i> Agency Number:
ARE ANY OF THE FOLLOWING INVOLVE	Vomen Mentally Dis	
<u>12/2/08</u> Date of Approval	Jung 96 Signature of Review	

The Messiah College IRB operates under the HHS Multiple Project Assurance of Compliance Number FWA 0000 1871.

Revised 9/08

Page 2

464

Explanation of Decision

Revisions contingent for approval:

NOT ACCEPTABLE for the following reasons:

Additional Comments:

Any significant change in the questionnaire or focus group outline will need an update to the IRB. Once you develop the final survey after the focus group stage, that should also be submitted to the IRB. We would also like a copy of any approval you receive from Mechanicsburg High School for our files.

Appendix K

The Blind Men and the Elephant

The Blind Men and the Elephant A Hindoo Fable

Ι

It was six men of Indostan To learning much inclined, Who went to see the Elephant (Though all of them were blind), That each by observation Might satisfy his mind.

Π

The *First* approached the Elephant, And happening to fall Against his broad and study side, At once began to bawl: "God bless me! but the Elephant Is very like a wall!"

III

The *Second*, feeling of the tusk, Cried, "Ho! what have we here So very round and smooth and sharp? To me 't is mighty clear this wonder of an Elephant Is very like a spear!"

IV

The *Third* approached the animal, And happening to take The squirming trunk within his hands, Thus boldly up and spake: "I see," quoth he, "the Elephant Is very like a snake!"

V

The *Fourth* reached out his eager hand, And felt about the knee. "What most this wondrous beast is like Is mighty plain," quoth he; "'T is clear enough the Elephant Is very like a tree!"

The *Fifth*, who chanced to touch the ear, Said: "E'en the blindest man Can tell what this resembles most; Deny the fact who can, This marvel of an Elephant is very like a fan!"

VII

The *Sixth* no sooner had begun About the beat to grope, Than, seizing on the swinging tail That fell within his scope, "I see," quoth he, "the Elephant Is very like a rope!"

VIII

And so these men of Indostan Disputed loud and long, Each in his own opinion Exceeding stiff and strong, Though each was partly in the right, And all were in the wrong!

Moral

So oft in theologic wars, The disputants, I ween, Rail on in utter ignorance Of what each other mean, And prate about an Elephant Not one of them has seen! [97]

Bibliography

- Public, private and nonpublic schools: Enrollments 2006-2007.
 http://www.pde.state.pa.us/k12statistics/lib/k12statistics/
 0607PPNSEnroEnt.pdf.
- [2] Computing curricula 2001. J. Educ. Resour. Comput., 1(3es):1, 2001.
- [3] Mechanicsburg area school district: Annual report to the community. http://www.mbgsd.org/5609_756513229/lib/5609_756513229/Annual_ Report_06-07_restored_Layout_1.pdf, 2007.
- [4] careerbuilder job seeker, search by industry. http://www.careerbuilder.com/JobSeeker/Jobs/SearchJobsByIndustry. aspx?sc_cmp2=JS_Nav_FJ_IND_SRCH, July 2009.
- [5] Dice company profile. http://about.dice.com/, 2009.
- [6] Dice.com job search for technology professionals. http://www.dice.com/, July 2009.
- [7] Mechanicsburg area school district: Tradition, pride, excellence. http://www.mbgsd.org/5609_756513229/lib/5609_756513229/MASD_Brochure_4.pdf, July 2009.
- [8] Monster find jobs. http://jobsearch.monster.com/Browse.aspx, July 2009.
- [9] Monster worldwide. http://about-monster.com/content/who-we-are, July 2009.
- [10] Simply hired about usefulness. http://www.simplyhired.com/a/our-company/about-us, July 2009.

- [11] Simply hired.com job search made simple. http://www.simplyhired.com/, July 2009.
- [12] Snagajob about us. http://www.snagajob.com/about-us/, 2009.
- [13] snagajob.com find jobs. http://www.snagajob.com/find-jobs/, July 2009.
- [14] Asli Yagmur Akbulut and Clayton Arlen Looney. Inspiring students to pursue computing degrees. In *Commun. ACM* [57], pages 67–71.
- [15] Sylvia Alexander, Martyn Clark, Ken Loose, June Amillo, Mats Daniels, Roger Boyle, Cary Laxer, and Dermot Shinners-Kennedy. Case studies in admissions to and early performance in computer science degrees. In *ITiCSE-WGR '03: Working group reports from ITiCSE on Innovation and* technology in computer science education, pages 137–147, New York, NY, USA, 2003. ACM.
- [16] Gregory R. Andrews. 1993-1994 cra taulbee survey. http://www.cra.org/statistics/survey/94/, March 1994.
- [17] Gregory R. Andrews. 1995 cra taulbee survey. http://www.cra.org/statistics/survey/95/95.pdf, March 1996.
- [18] Gregory R. Andrews. 1995-1996 taulbee survey.http://www.cra.org/statistics/survey/96/96.pdf, March 1997.
- [19] Stephanie Armour. Generation y: They've arrived at work with a new attitude.
 http://www.usatoday.com/money/workplace/2005-11-06-gen-y_x.htm, November 2005.
- [20] Computer Research Association. Cra taulbee survey. http://www.cra.org/statistics/.

- [21] Computer Research Association. Cra's mission statement. http://www.cra.org/main/cra.mission.html.
- [22] William F. Atchison, Samuel D. Conte, John W. Hamblen, Thomas E. Hull, Thomas A. Keenan, William B. Kehl, Edward J. McCluskey, Silvio O. Navarro, Werner C. Rheinboldt, Earl J. Schweppe, William Viavant, and David M. Young, Jr. Curriculum 68: Recommendations for academic programs in computer science: a report of the acm curriculum committee on computer science. *Commun. ACM*, 11(3):151–197, 1968.
- [23] Richard H. Austing, Bruce H. Barnes, Della T. Bonnette, Gerald L. Engel, and Gordon Stokes. Curriculum '78: recommendations for the undergraduate program in computer science— a report of the acm curriculum committee on computer science. *Commun. ACM*, 22(3):147–166, 1979.
- [24] Gordon L. Bailes and Terry A. Countermine. Computer science (1978) enrollment, faculty, and recruiting. SIGCSE Bull., 11(2):43–51, 1979.
- [25] Jens Bennedsen and Michael E. Caspersen. An investigation of potential success factors for an introductory model-driven programming course. In *ICER '05: Proceedings of the first international workshop on Computing education research*, pages 155–163, New York, NY, USA, 2005. ACM.
- [26] Jens Bennedsen and Michael E. Caspersen. Abstraction ability as an indicator of success for learning computing science? In *ICER '08: Proceeding of the fourth international workshop on Computing education research*, pages 15–26, New York, NY, USA, 2008. ACM.
- [27] Susan Bergin and Ronan Reilly. Programming: factors that influence success. In SIGCSE '05: Proceedings of the 36th SIGCSE technical symposium on Computer science education, pages 411–415, New York, NY, USA, 2005. ACM.

- [28] College Board. About usefulness. http://www.collegeboard.com/about/index.html, 2010.
- [29] College Board. College matchmaker. http: //collegesearch.collegeboard.com/search/adv_typeofschool.jsp, September 2010.
- [30] Joan C. Bohl. Generations X and Y in Law School: Practical Strategies for Teaching the 'MTV/Google' Generation. Loyola Law Review, 54:1, 2009.
- [31] Jennifer M. Brill, M. J. Bishop, and Andrew E. Walker. The competencies and characteristics required of an effective project manager: A web-based delphi study. *Educational Technology Research and Development*, 54(2):115–140, May 2006.
- [32] Kim Bruce. Thoughts on computer science education. ACM Comput. Surv., 28(4es):93, December 1996.
- [33] Randal E. Bryant and Mary Jane Irwin. 1999-2000 taulbee survey. http://www.cra.org/statistics/survey/00/00.pdf, March 2001.
- [34] Randal E. Bryant and Moshe Y. Vardi. 2000-2001 taulbee survey. http://www.cra.org/CRN/articles/march02/bryant.vardi.html, March 2002.
- [35] J. T. Cain, editor. A Curriculum in Computer Science and Engineering committee report. IEEE Computer Society, 1977.
- [36] J.T. Cain, Jr. Langdon G.G., and M.R. Varanasi. The ieee computer society model program in computer science and engineering. *Computer*, 17(4):8–17, 1984.

- [37] Chico California State University. Who are the gen y students?www.csuchico.edu/pub/inside/2_05_05/pause.html, February 2005.
- [38] Wayne J. Camara and Roger Ellis Millsap. Using the PSAT/NMSQT and course grades in predicting success in the Advanced Placement Program.
 College Entrance Examination Board, New York (Box 886, New York 10101-0886), 1998.
- [39] Lori Carter. Why students with an apparent aptitude for computer science don't choose to major in computer science. SIGCSE Bull., 38(1):27–31, 2006.
- [40] Michael E. Caspersen and Jens Bennedsen. Instructional design of a programming course: a learning theoretic approach. In *ICER '07: Proceedings* of the third international workshop on Computing education research, pages 111–122, New York, NY, USA, 2007. ACM.
- [41] A. T. Chamillard. Using student performance predictions in a computer science curriculum. pages 260–264, 2006.
- [42] Hyunyi Cho and Robert Larose. Privacy Issues in Internet Surveys. Social Science Computer Review, 17(4):421–434, 1999.
- [43] Henrik Baerbak Christensen and Michael E. Caspersen. Frameworks in cs1: a different way of introducing event-driven programming. In *ITiCSE '02: Proceedings of the 7th annual conference on Innovation and technology in computer science education*, pages 75–79, New York, NY, USA, 2002. ACM.
- [44] Jacques Cohen. Updating computer science education. Commun. ACM, 48(6):29–31, 2005.
- [45] D. E. Comer, David Gries, Michael C. Mulder, Allen Tucker, A. Joe Turner,

and Paul R. Young. Computing as a discipline. *Commun. ACM*, 32(1):9–23, 1989.

- [46] Liberal Arts Computer Science Consortium. A 2007 model curriculum for a liberal arts degree in computer science. J. Educ. Resour. Comput., 7(2):2, 2007.
- [47] S. D. Conte, John W. Hamblen, William B. Kehl, Silvio O. Navarro, Werner C. Rheinboldt, David M. Young, Jr., and William F. Atchinson. An undergraduate program in computer science—preliminary recommendations. *Commun. ACM*, 8(9):543–552, 1965.
- [48] Jill Courte and Cathy Bishop-Clark. Do students differentiate between computing disciplines? In SIGCSE '09: Proceedings of the 40th ACM technical symposium on Computer science education, pages 29–33, New York, NY, USA, 2009. ACM.
- [49] Andre L. Delbecq, Andrew H Van de Ven, and David H. Gustafson. Group Techniques for Program Planning: A Guide to Nominal Group and Delphi Processes. Scott, Foresoman and Company, 1975. 83-107.
- [50] Aniruddha M. Deshpande, Richard N. Shiffman, and Prakash M. Nadkarni. Metadata-driven delphi rating on the internet. *Computer Methods and Programs in Biomedicine*, 77(1):49 – 56, 2005.
- [51] William H. Dodrill. Computer support for teaching large-enrollment courses.
 In SIGCSE '82: Proceedings of the thirteenth SIGCSE technical symposium on Computer science education, pages 31–33, New York, NY, USA, 1982. ACM.
- [52] Arlene Dohm and Lynn Shniper. Occupational employment projections to 2016. Monthly Labor Review, 130(12):86–125, November 2007.

- [53] A. Ebrahimi, C. Schweikert, S. Sayeed, S. Parham, H. Akibu, A. Saeed, and W. Parris. Website error analysis of colleges and universities on long island in new york. *SIGCSE Bull.*, 39(2):171–176, 2007.
- [54] Eric B. Figueroa and Rose A. Woods. Industry output and employment projections to 2016. Monthly Labor Review, 130(12):53–85, November 2007.
- [55] James C. Franklin. An overview of bls projections to 2016. http://www.bls.gov/opub/mlr/2007/11/art1full.pdf, November 2007.
- [56] Michael J. Gallivan, Duane P. Truex, III, and Lynette Kvasny. Changing patterns in it skill sets 1988-2003: a content analysis of classified advertising. *SIGMIS Database*, 35(3):64–87, 2004.
- [57] Joey F. George, Joseph S. Valacich, and Josep Valor. Does information systems still matter? lessons for a maturing discipline. *Communications of* AIS, 16:219–232, 2005.
- [58] Norman E. Gibbs and Allen B. Tucker. A model curriculum for a liberal arts degree in computer science. *Commun. ACM*, 29(3):202–210, 1986.
- [59] Michael Goldweber, John Impagliazzo, Iouri A. Bogoiavlenski, A. G. Clear, Gordon Davies, Hans Flack, J. Paul Myers, and Richard Rasala. Historical perspectives on the computing curriculum. *SIGCUE Outlook*, 25(4):94–111, 1997. Chairman-Michael Goldweber and Chairman-John Impagliazzo.
- [60] Joanna Goode. Connecting k-16 curriculum & policy: making computer science engaging, accessible, and hospitable for underrepresented students. In SIGCSE '10: Proceedings of the 41st ACM technical symposium on Computer science education, pages 22–26, New York, NY, USA, 2010. ACM.

- [61] John T. Gorgone, Gordon B. Davis, Joseph S. Valacich, Heikki Topi, David L. Feinstein, and Jr. Herbert E. Longenecker. Model curriculum and guidelines for undergraduate degree programs in information systems. http://www.acm.org/education/education/curric_vols/is2002.pdf, 2002.
- [62] Gopal K. Gupta. Computer science curriculum developments in the 1960s.*IEEE Annals of the History of Computing*, 29(2):40–54, 2007.
- [63] Mark Guzdial and Elliot Soloway. Teaching the nintendo generation to program. Commun. ACM, 45(4):17–21, 2002.
- [64] C. Richard G. Helps, Robert B. Jackson, and Marshall B. Romney. Student expectations of computing majors. In SIGITE '05: Proceedings of the 6th conference on Information technology education, pages 101–106, New York, NY, USA, 2005. ACM.
- [65] Jonathan H. Hill. Applying abstraction to master complexity: The comparison of abstraction ability in computer science majors with students in other disciplines, September 2007.
- [66] IEEE Computer Society. The 1983 IEEE Computer Society Model Program in Computer Science and Engineering. IEEE Computer Society Press, Silver Spring, MD, January 1983.
- [67] Mary Jane Irwin and Frank Friedman. 1998-1999 taulbee survey. http://www.cra.org/statistics/survey/99/99.pdf, March 2000.
- [68] Lisa C. Kaczmarczyk, Matthew R. Boutell, and Mary Z. Last. Challenging the advanced first-year student's learning process through student presentations. In *ICER '07: Proceedings of the third international workshop on Computing education research*, pages 17–26, New York, NY, USA, 2007. ACM.

- [69] Elliot B. Koffman, Philip L. Miller, and Caroline E. Wardle. Recommended curriculum for cs1, 1984. Commun. ACM, 27(10):998–1001, 1984.
- [70] Elliot B. Koffman, David Stemple, and Caroline E. Wardle. Recommended curriculum for cs2, 1984: a report of the acm curriculum task force for cs2. *Commun. ACM*, 28(8):815–818, 1985.
- [71] Dexter Kozen and Jim Morris. 1997-1998 taulbee survey. http://www.cra.org/statistics/survey/98/98.pdf, March 1999.
- [72] Dexter Kozen and Stuart Zweben. 1996-1997 taulbee survey. http://www.cra.org/statistics/survey/97/97.pdf, March 1998.
- [73] Michael Külling and Poul Henriksen. Game programming in introductory courses with direct state manipulation. In *ITiCSE '05: Proceedings of the* 10th annual SIGCSE conference on Innovation and technology in computer science education, pages 59–63, New York, NY, USA, 2005. ACM.
- [74] Ray Kurzweil. The age of spiritual machines: when computers exceed human intelligence. Viking Press, New York, NY, USA, 1998.
- [75] Ray Kurzweil. The law of accelerating returns. http://elrond.tud.ttu.ee/material/enn/MajEttekanne/The%20Law%
 20of%20Accelerating%20Returns.doc, March 7 2001. (Accessed July 26, 2009).
- [76] Ray Kurzweil. Singularity: Ubiquity interviews ray kurzweil. volume 7, pages 1–1, New York, NY, USA, 2006. ACM.
- [77] Anita J. LaSalle. Building collaborative partnerships in higher education and industry.

urlhttp://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0722301, 2007.

- [78] Harold A. Linstone and Murray Turoff, editors. *The Delphi Method: Techniques and Applications*. Addison-Wesley Educational Publishers Inc, December 1975.
- Barry M. Lunt, Joseph J. Ekstrom, Sandra Gorka, Gregory Hislop, Reza Kamali, Eydie Lawson, Richard LeBlanc, Jacob Miller, and Han Reichgelt.
 Information technology 2008 - curriculum guidelines for undergraduate degree programs in information technology.
 http://www.acm.org//education/curricula/IT2008%20Curriculum.pdf, November 2008.
- [80] Tait Jeffrey Martin. Information processing and college choice: An examination of recruitment information on higher education Web sites using the heuristic-systematic model. PhD thesis, THE FLORIDA STATE UNIVERSITY, 2006.
- [81] Jia Mi and Frederick Nesta. Marketing library services to the net generation. Library Management, 27(6/7):411 – 422, 2006.
- [82] Jr. Miner, Frederick C. A comparative analysis of three diverse group decision making approaches. The Academy of Management Journal, 22(1):81–93, 1979.
- [83] David Morgan. Developing Questions for Focus Groups(Focus Group Kit).Sage Publications, Inc., Thousand Oaks, CA 91320, 1998.
- [84] David Morgan. The Focus Group Guidebook (Focus Group Kit). Sage Publications, Inc., Thousand Oaks, CA 91320, 1998.

- [85] David Morgan. Moderating Focus Groups (Focus Group Kit). Sage Publications, Inc., Thousand Oaks, CA 91320, 1998.
- [86] David Morgan. Planning Focus Groups(Focus Group Kit). Sage Publications, Inc., Thousand Oaks, CA 91320, 1998.
- [87] NAS. Generation y: The millennials; ready or not, here they come. http: //www.nasrecruitment.com/talenttips/NASinsights/GenerationY.pdf, 2006.
- [88] National Science Foundation. Cise about. http://www.nsf.gov/cise/about.jsp, July 2009.
- [89] Ellen Neuborne. Generation y today's teens-the biggest bulge since the boomers-may force marketers to toss their old tricks. http://www.businessweek.com/1999/99_07/b3616001.htm, July 1999.
- [90] NSF. About the national science foundation. http://www.nsf.gov/about/, July 2009. Accessed July 20, 2009.
- [91] NSF. A timeline of nsf history. http://www.nsf.gov/about/history/overview-50.jsp, July 2009. Accessed July 30, 2009.
- [92] David A. Patterson. Computer science education in the 21st century. Commun. ACM, 49(3):27–30, 2006.
- [93] Qualtrics. What we offer. http://www.qualtrics.com/what-we-offer/, 2010.
- [94] Deborah Rothberg. Generation y for dummies. http://www.eweek.com/c/a/IT-Management/Generation-Y-for-Dummies/,

- [95] Ian Rowlands, David Nicholas, Peter Williams, Paul Huntington, Maggie Fieldhouse, Barrie Gunter, Richard Withey, Hamid R. Jamali, Tom Dobrowolski, and Carol Tenopir. The google generation: the information behaviour of the researcher of the future. In Aslib Proceedings, volume 60, pages 290 – 310, 2008.
- [96] John Sargent. An overview of past and projected employment changes in the professional it occupations. http://www.cra.org/CRN/issues/0403.pdf, May 2004.
- [97] James Godfrey Saxe. The Poems of John Godfrey Saxe. James R. Osgood and Company, 1873. http://rack1.ul.cs.cmu.edu/is/saxe/.
- [98] Russell Shackelford. Computing curricula 2001: notes on the interim draft. J. Comput. Small Coll., 17(3):103–113, 2002.
- [99] Russell Shackelford, James H. Cross II, Gordon Davies, John Impagliazzo, Reza Kamali, Richard LeBlanc, Barry Lunt, Andrew McGettrick, Robert Sloan, and Heikki Topi. Computing curricula 2005 - the overview report. http://www.acm.org/education/education/curric_vols/ CC2005-March06Final.pdf, September 2005.
- [100] Gregory J. Skulmoski, Francis T. Hartman, and Jennifer Krahn. The delphi method for graduate research. *Journal of Information Technology Education*, 6:1–21, 2007.
- [101] Mark Stamp. Information Security: Principles and Practice. Wiley-Interscience, 2006.
- [102] The Joint Task Force on Computing Curricula IEEE Computer Society Association for Computing Machinery. Computer engineering 2004 -

curriculum guidelines for undergraduate degree programs in computer engineering. http://www.acm.org/education/education/curric_vols/ CE-Final-Report.pdf, December 2004.

- [103] The Joint Task Force on Computing Curricula IEEE Computer Society Association for Computing Machinery. Software engineering 2004 - curriculum guidelines for undergraduate degree programs in software engineering. http://sites.computer.org/ccse/SE2004Volume.pdf, August 23 2004.
- [104] Allen B. Tucker. Computing curricula 1991. Commun. ACM, 34(6):68–84, 1991.
- [105] Moshe Y. Vardi, Tim Finin, and Tom Henderson. 2001-2002 taulbee survey. http://www.cra.org/CRN/articles/march03/taulbee.html, March 2003.
- [106] Katy Whitelaw. Why make websites accessible?: and how? In SIGUCCS '03: Proceedings of the 31st annual ACM SIGUCCS fall conference, pages 259–261, New York, NY, USA, 2003. ACM.
- [107] Sophia Yan. Understanding generation y. http://www.oberlin.edu/stupub/ ocreview/2006/12/08/features/Understanding_Generation_Y.html, December 2006.
- [108] Stuart Zweben. 2003-2004 taulbee survey. http://www.cra.org/CRN/articles/may05/taulbee.html, May 2005.
- [109] Stuart Zweben. 2004-2005 taulbee survey. http://www.cra.org/CRN/articles/may06/taulbee.html, May 2006.
- [110] Stuart Zweben. 2005-2006 taulbee survey. http://www.cra.org/CRN/articles/may07/taulbee.html, May 2007.

- [111] Stuart Zweben. 2006-2007 taulbee survey. http://www.cra.org/CRN/articles/may08/taulbee.html, May 2008.
- [112] Stuart Zweben. 2007-2008 taulbee survey. http://archive.cra.org/statistics/survey/0708.pdf, May 2009.
- [113] Stuart Zweben and William Aspray. 2002-2003 taulbee survey. http://www.cra.org/CRN/articles/may04/taulbee.html, May 2004.

